Skip to main content
Log in

Reduction of Atherosclerotic Lesions by the Chemotherapeutic Agent Carmustine Associated to Lipid Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

After injection in the bloodstream, a lipid nanoparticle (LDE) resembling low-density lipoprotein (LDL) concentrates in atherosclerotic lesions of cholesterol-fed rabbits. Here, rabbits with atherosclerosis were treated with carmustine, an antiproliferative agent used in cancer chemotherapy, associated to LDE to investigate the effects on the lesions.

Methods

Twenty-seven male New Zealand rabbits were fed a 1 % cholesterol diet for 8 weeks. After 4 weeks nine animals were treated with intravenous saline solution, nine with intravenous LDE alone, and nine with intravenous LDE-carmustine (4 mg/kg, weekly for 4 weeks).

Results

LDE-carmustine reduced lesion size by 90 % compared to the controls. LDE-carmustine reduced the presence of macrophages, vascular smooth muscle cells, and regulatory T cells in the arterial intima, as well as the presence of matrix metallopeptidase-9, interleukin-1β and TNF-α and lipoprotein receptors, namely LDL-receptor, LDL-related protein-1, scavenger receptor class B member 1. When injected alone, without association to carmustine, LDE was not different from injected saline solution.

Conclusions

LDE-carmustine treatment resulted in marked reduction of lesion area, of the invasion of the arterial intima by macrophages and vascular smooth muscle cells and pro-inflammatory factors. Therefore, this new formulation shows great potential for therapy of atherosclerotic cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lardizabal JA, Deedwania P. Lipid-lowering therapy with statins for the primary and secondary prevention of cardiovascular disease. Cardiol Clin. 2011;29:87–103.

    Article  PubMed  Google Scholar 

  2. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  Google Scholar 

  3. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138:S419–20.

    Article  CAS  PubMed  Google Scholar 

  4. Wolf D, Stachon P, Bode C, Zirlik A. Inflammatory mechanisms in atherosclerosis. Hamostaseologie. 2014;34:63–71.

    Article  CAS  PubMed  Google Scholar 

  5. Chávez-Sánchez L, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV, Montoya-Díaz E, Blanco-Favela F. Innate immune system cells in atherosclerosis. Arch Med Res. 2014;45:1–14.

    Article  PubMed  Google Scholar 

  6. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Am Heart J. 2011;162:597–605.

    Article  CAS  PubMed  Google Scholar 

  7. Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov. 2011;10:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kraus S, Naumov I, Shapira S, et al. Aspirin but not meloxicam attenuates early atherosclerosis in apolipoprotein E knockout mice. Isr Med Assoc J. 2014;16:233–8.

    PubMed  Google Scholar 

  9. Ridker PM. Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J Thromb Haemost. 2009;7(Suppl 1):332–9.

    Article  CAS  PubMed  Google Scholar 

  10. Investigators STABILITY, White HD. Held C, Stewart R, Tarka E, Brown R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370:1702–11.

    Article  Google Scholar 

  11. Aarnoudse MW, Lamberts HB, Dijk F, Vos J, de Vries AJ. Monocytes and radiation-induced Atheromatosis in rabbits. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;47:211–6.

    Article  CAS  PubMed  Google Scholar 

  12. de la Llera-Moya M, Rothblat GH, Glick JM, England JM. Etoposide treatment suppresses atherosclerotic plaque development in cholesterol-fed rabbits. Arterioscler Thromb. 1992;12:1363–70.

    Article  PubMed  Google Scholar 

  13. Maranhão RC, Tavares ER. Advances in non-invasive drug delivery for atherosclerotic heart disease. Expert Opin Drug Deliv. 2015;12:1135–47.

    Article  PubMed  Google Scholar 

  14. Maranhão RC, Garicochea B, Silva EL, et al. Increased plasma removal of microemulsions resembling the lipid phase of low-density lipoproteins (LDL) in patients with acute myeloid-leukemia – a possible new strategy for the treatment of the disease. Braz J Med Biol Res. 1992;25:1003–7.

    PubMed  Google Scholar 

  15. Maranhão RC, Garicochea B, Silva EL, et al. Plasma kinetics and biodistribution of a lipid emulsion resembling low-density lipoprotein in patients with acute leukemia. Cancer Res. 1994;54:4660–6.

    PubMed  Google Scholar 

  16. Maranhão RC, Roland IA, Toffoletto O, et al. Plasma kinetic behavior in hyperlipidemic subjects of a lipidic microemulsion that binds to low density lipoprotein receptors. Lipids. 1997;32:624–33.

    Article  Google Scholar 

  17. Ho YK, Smith RG, Brown MS, Goldstein JL. Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells. Blood. 1978;52:1099–114.

    CAS  PubMed  Google Scholar 

  18. Bulgarelli A, Leite Jr AC, Dias AA, Maranhão RC. Anti-atherogenic effects of methotrexate carried by a lipid nanoemulsion that binds to LDL receptors in cholesterol-fed rabbits. Cardiovasc Drugs Ther. 2013;27:531–9.

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigues DG, Covolan CC, Coradi ST, Barboza R, Maranhão RC. Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J Pharm Pharmacol. 2002;54:765–72.

    Article  CAS  PubMed  Google Scholar 

  20. Kretzer IF, Maria DA, Maranhão RC. Drug-targeting in combined cancer chemotherapy: tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion. Cell Oncol. 2012;35:451–60.

    Article  CAS  Google Scholar 

  21. Maranhão RC, Graziani SR, Yamaguchi N, et al. Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother Pharmacol. 2002;49:487–98.

    Article  PubMed  Google Scholar 

  22. Hungria VT, Latrilha MC, Rodrigues DG, Bydlowski SP, Chiattone CS, Maranhão RC. Metabolism of a cholesterol-rich microemulsion (LDE) in patients with multiple myeloma and a preliminary clinical study of LDE as a drug vehicle for treatment of the disease. Cancer Chemother Pharmacol. 2004;53:51–60.

    Article  CAS  PubMed  Google Scholar 

  23. Pinheiro KV, Hungria VT, Ficker ES, Valduga CJ, Mesquita CH, Maranhão RC. Plasma kinetics of a cholesterol-rich microemulsion (LDE) in patients with Hodgkin's and non-Hodgkin's lymphoma and a preliminary study on the toxicity of etoposide associated with LDE. Cancer Chemother Pharmacol. 2006;57:624–30.

    Article  CAS  PubMed  Google Scholar 

  24. Dias ML, Carvalho JP, Rodrigues DG, Graziani SR, Maranhão RC. Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers. Cancer Chemother Pharmacol. 2007;59:105–11.

    Article  CAS  PubMed  Google Scholar 

  25. Tavares ER, Freitas FR, Diament J, Maranhão RC. Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions. Int J Nanomedicine. 2011;6:2297–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Maranhão RC, Tavares ER, Padoveze AF, Valduga CJ, Rodrigues DG, Pereira MD. Paclitaxel associated with cholesterol-rich nanoemulsions promotes atherosclerosis regression in the rabbit. Atherosclerosis. 2008;197:959–66.

    Article  PubMed  Google Scholar 

  27. Teixeira RS, Cury R, Maranhão RC. Effects on Walker 256 tumour of carmustine associated with a cholesterol-rich microemulsion (LDE). J Pharm Pharmacol. 2004;56:909–14.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas RP, Recht L, Nagpal S. Advances in the management of glioblastoma: the role oftemozolomide and MGMT testing. Clin Pharmacol. 2013;5:1–9.

    CAS  PubMed  Google Scholar 

  29. Maranhão RC, César TB, Pedroso-Mariani SR. HirataMH, Mesquita CH. Metabolic behavior in rats of a non-protein microemulsion resembling low density lipoprotein. Lipids. 1993;28:691–6.

    Article  PubMed  Google Scholar 

  30. Moura JA, Valduga CJ, Tavares ER, Kretzer IF, Maria DA, Maranhão RC. Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int J Nanomedicine. 2011;6:2285–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Valduga CJ, Fernandes DC, Lo Prete AC, Azevedo CHM, Rodrigues DG, Maranhão RC. Use of a cholesterol-rich microemulsion that binds to low-density lipoprotein receptors as vehicle for etoposide. J Pharm Pharmacol. 2003;55:1615–22.

    Article  CAS  PubMed  Google Scholar 

  32. Fischhaber PL, Gall AS, Duncan JA, Hopkins PB. Direct demonstration in synthetic oligonucleotides that N,N′-bis(2-chloroethyl)-nitrosourea cross links N1 of deoxyguanosine to N3 of deoxycytidine on opposite strands of duplex DNA. Cancer Res. 1999;59:4363–8.

    CAS  PubMed  Google Scholar 

  33. Kolodgie FD, Burke AP, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16:285–92.

    Article  CAS  PubMed  Google Scholar 

  34. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10:36–46.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Salojin K, Gao JX, Cameron M, Geisler C, Delovitch TL. TCRαβ chains associate with the plasma membrane independently of CD3 and TCRζchains in murine primary T cells. J Immunol. 1998;161:2930–7.

    CAS  PubMed  Google Scholar 

  36. de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, van der Wal AC. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE. 2007;2:e779.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pastrana JL, Sha X, Virtue A, Mai J, Cueto R, Lee IA, Wang H, Yang XF. Regulatory T cells and atherosclerosis. J Clin Exp Cardiolog. 2012;002:1–35.

    Google Scholar 

  38. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  39. Ketelhuth DFJ, Bäck M. The role of matrix metalloproteinases in atherothrombosis. Curr Atheroscler Rep. 2011;13:162–9.

    Article  CAS  PubMed  Google Scholar 

  40. Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245–52.

    Article  CAS  PubMed  Google Scholar 

  41. Almeida CP, Vital CG, Contente TC, Maria DA, Maranhão RC. Modification of composition of a nanoemulsion with different cholesteryl ester molecular species: effects on stability, peroxidation, and cell uptake. Int J Nanomedicine. 2010;5:679–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Robbins CS, Hilgendorf I, Weber GF, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med. 2013;19:1166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339:161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang J, Lobatto ME, Hassing S, et al. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Sci Adv. 2015;1:e1400223.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shiomi M, Ito T, Tsukada T, et al. Reduction of serum cholesterol levels alters lesional composition of atherosclerotic plaques: effect of pravastatin sodium on atherosclerosis in mature WHHL rabbits. Arterioscler Thromb Vasc Biol. 1995;15:1938–44.

    Article  CAS  PubMed  Google Scholar 

  46. Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA, Bao S, Barter PJ. Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2005;25:2416–21.

    Article  CAS  PubMed  Google Scholar 

  47. Schiener M, Hossann M, Viola JR, et al. Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med. 2014;20:271–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Council for Scientific and Technological Development (CNPq, Brasilia, Brazil). Dr. Daminelli had a scholarship and Dr. Raul C. Maranhão holds a Research Career Award, both from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul C. Maranhão.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest relative to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daminelli, E.N., Martinelli, A.E.M., Bulgarelli, A. et al. Reduction of Atherosclerotic Lesions by the Chemotherapeutic Agent Carmustine Associated to Lipid Nanoparticles. Cardiovasc Drugs Ther 30, 433–443 (2016). https://doi.org/10.1007/s10557-016-6675-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-016-6675-0

Keywords

Navigation