Skip to main content
Log in

Plasma kinetic behavior in hyperlipidemic subjects of a lipidic microemulsion that binds to low density lipoprotein receptors

  • Published:
Lipids

Abstract

It was previously reported that a protein-free microemulsion (LDE) with structure roughly resembling that of the lipid portion of low density lipoprotein (LDL) was presumably taken up by LDL receptors when injected into the bloodstream. In contact with plasma, LDE acquires apolipoproteins (apo) including apo E that would be the ligand for receptor binding. Currently, apo were associated to LDE by incubation with high density lipoprotein (HDL). LDE-apo uptake by mononuclear cells showed a saturation kinetics, with an apparent K m of 13.1 ng protein/mL. LDE-apo is able to displace LDL uptake by mononuclear cells with a K i of 11.5 ng protein/mL. LDE without apo is, however, unable to displace LDL. The uptake of 14C-HDL is not dislocated by increasing amounts of LDE-apo, indicating that HDL and LDE-apo do not bind to the same receptor sites. In human hyperlipidemias, LDE labeled with 14C-cholesteryl ester behaved kinetically as expected for native LDL. LDE plasma disappearance curve obtained from eight hypercholesterolemic patients was markedly slower than that from 10 control normolipidemic subjects [fractional clearance rate (FCR)=0.02±0.01 and 0.12±0.04 h−1, respectively; P<0.0001]. On the other hand, in four severely hypertriglyceridemic patients, LDE FCR was not significantly different from the controls (0.07±0.03 h−1). These results suggest that LDE can be a useful device to study lipoprotein metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AML:

aqute myeloid leukemia

apo:

apolipoprotein

FCR:

fractional clearance rate

HDD:

high density lipoprotein

LDE:

protein-free microemulsion

LDL:

low density lipoprotein

VLDL:

very low density lipoprotein

References

  1. Brown, M.S., and Goldstein, J.L. (1986) A Receptor-Mediated Pathway for Cholesterol Homeostasis, Science 232, 34–47.

    Article  PubMed  CAS  Google Scholar 

  2. Grundy, S.M., Vega, G.L., and Bilheimer, D.W. (1985) Kinetic Mechanisms in Low-Density Lipoprotein Levels and Rise with Age, Arteriosclerosis 5, 623–627.

    PubMed  CAS  Google Scholar 

  3. Thompson, G.R., Teng, B., and Sniderman, A.D. (1987) Kinetics of LDL Subfractions, Am. Heart J. 113, 514–517.

    Article  PubMed  CAS  Google Scholar 

  4. Ginsburg, G.S., Small, D.M., and Atkinson, D. (1982) Microemulsions of Phospholipids and Cholesterol-Esters: Protein-Free Models of LDL, J. Biol. Chem. 25, 8216–8227.

    Google Scholar 

  5. Lundberg, B., and Suominen, L. (1984) Preparation of Biologically Active Analogs of Serum Low Density Lipoprotein, J. Lipid Res. 25, 550–558.

    PubMed  CAS  Google Scholar 

  6. Maranhão, R.C., Cesar, T.B., Pedroso-Mariani, S., Hirata, M.H., and Mesquita, C.H. (1993) Metabolic Behavior in Rats of a Nonprotein Microemulsion Resembling Low Density Lipoprotein, Lipids 28, 691–696.

    PubMed  Google Scholar 

  7. Maranhão, R.C., Garicochea, B., Silva, E.L., Dorlheac-Llacer, P., Pileggi, F., and Chamone, D.A.F. (1992) Increased Plasma Removal of Microemulsions Resembling the Lipid Phase of Low Density Lipoproteins in Patients with Acute Myeloid Leukemia: A Possible New Strategy for the Treatment of the Disease, Braz. J. Med. Biol. Res. 25, 68–79.

    Google Scholar 

  8. Maranhão, R.C., Garicocchea, B., Silva, E.L., Dorlheac-Llacer, P., Cadena, S.M.S., Coelho, I.J.C., Meneghetti, J.C., Pileggi, F.J.C., and Chamone, D.A.F. (1994) Plasma Kinetics and Biodistribution of a Lipid Emulsion Resembling Low Density Lipoprotein in Patients with Acute Leukemia, Cancer Res. 54, 4660–4666.

    PubMed  Google Scholar 

  9. Reisinger, R.E., and Atkinson, D. (1990) Phospholipid/Cholesteryl Ester Microemulsions Containing Unesterified Cholesterol: Model Systems for LDL, J. Lipid Res. 31, 849–858.

    PubMed  CAS  Google Scholar 

  10. Zannis, V.I. (1989) Molecular Biology of Human Apolipoproteins B and E and Associated Diseases of Lipoprotein Metabolism, Adv. Lipid Res. 32, 1–64.

    Google Scholar 

  11. Boyum, A. (1964). Separation of White Blood Cells, Nature 204, 793–794.

    Article  PubMed  CAS  Google Scholar 

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randal, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275, 1051.

    PubMed  CAS  Google Scholar 

  13. Greenwood, F.C., Hunter, W.M., and Glover, J.S. (1963) The Preparation of 131I-Labelled Human Growth Hormone of High Specific Radioactivity, Biochem. J. 89, 114–117.

    PubMed  CAS  Google Scholar 

  14. Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955) The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  15. Pittman, R.C., Knecht, T.P., Rosenbaum, M.S., and Taylor, C.A. (1987) A Nonendocytotic Mechanism for the Selective Uptake of High Density Lipoprotein-Associated Cholesterol Esters, J. Biol. Chem. 262, 2443–2450.

    PubMed  CAS  Google Scholar 

  16. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957). A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 206, 497–509.

    Google Scholar 

  17. Soloni, F.G. (1971) Simplified Manual Micromethod for Determination of Serum Triglycerides, Clin. Chem. 17, 529–34.

    PubMed  CAS  Google Scholar 

  18. Friedewald, W.T., Levy, R.I., and Fredrickson, D.D. (1972) Estimation of the Concentration of Low Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge, Clin. Chem. 18, 499–502.

    PubMed  CAS  Google Scholar 

  19. Mancini, G., Carbonara, A.O., and Heremans, J.F. (1965) Immunochemical Quantitation of Antigens by Single Radial Immunodiffusion, Immunochemistry 2, 235–254.

    Article  PubMed  CAS  Google Scholar 

  20. Matthews, C.M.E. (1957) The Theory of Tracer Experiments with I-Labeled Plasma Proteins, Phys. Med. Biol. 2, 36–42.

    Article  PubMed  CAS  Google Scholar 

  21. Snedecor, G.W., and Cochran, W.G. (1967) Shortcut in Nonparametric Tests, in Statistical Methods, 6th edn., pp. 135–148, Iowa State University Press, Ames.

    Google Scholar 

  22. Chao, Y., Windler, E.E., Chen, G.C., and Havel, R.J. (1979) Catabolism of Rat and Human Lipoproteins in Rats Treated with 17α-Ethinyl Estradiol, J. Biol. Chem. 254, 11360–11366.

    PubMed  CAS  Google Scholar 

  23. Ho, Y.K., Smith, R.G., Brown, M.S., and Goldstein, J.L. (1978) Low Density Lipoprotein (LDL) Receptor Activity in Human Acute Myelogenous Leukemia Cells, Blood 52, 1099–1114.

    PubMed  CAS  Google Scholar 

  24. Vitols, S., Gahrton, G., Öst, A., and Peterson, C. (1984) Elevated Low Density Lipoprotein Receptor Activity in Leukemic Cells with Monocytic Differentiation, Blood 63, 1186–1193.

    PubMed  CAS  Google Scholar 

  25. Melo, N., Latrilha, C., Vinagre, C.G., Pinotti, J.A., Fonseca, A.M., Halbe, H.W., Pompei, L.M., Pileggi, F.J.C., and Maranhão, R.C. (1993) Effects of Estrogen Transdermal Therapy upon the Plasma Removal of LDL and Chylomicrons, The Vascular System 26, 71.

    Google Scholar 

  26. Walsh, B.W., Schiff, I., Rosner, B., Greenberg, L., Rarnikar, V., and Sacks, F. (1991) Effects of Postmenopausal Estrogen Replacement on the Concentration and Metabolism of Plasma Lipoproteins, New Eng. J. Med. 325, 1196–1204.

    Article  PubMed  CAS  Google Scholar 

  27. Pitas, R.E., Inneratity, I.L., Arnold, K.S., and Mahley, R.W. (1979) Rate and Equilibrium Constants for Binding of apo-E HDLc (a cholesterol-induced lipoprotein) and Low Density Lipoproteins to Human Fibroblasts: Evidence for Multiple Receptor Binding of apo-E HDLc, Proc. Natl. Acad. Sci. USA 76, 2311–2315.

    Article  PubMed  CAS  Google Scholar 

  28. Kesaniemi, Y.A., Vega, G.L., and Grundy, S.M. (1982) in Lipoprotein Kinetics and Modeling (Berman, M., Grundy, S.M., and Howard, B.V., eds.) pp. 198–203, Academic Press, New York.

    Google Scholar 

  29. Hirata, R. (1991) Effects of Apolipoprotein B upon The Metabolism of Emulsions Resembling LDL Lipidic Portion, Ph.D. Thesis, 72 pp., University of São Paulo.

  30. Maranhão, R.C., Tercyak, A.M., and Redgrave, T.B. (1986) Effects of Cholesterol Content on the Metabolism of Protein-Free Emulsion Models of Lipoproteins, Biochim. Biophys. Acta 875, 247–255.

    PubMed  Google Scholar 

  31. Zannis, V.I., Kardassis, D., and Zannis, E.E. (1993) Genetic Mutations Affecting Human Lipoproteins, Their Receptors, and Their Enzymes, in Advances in Human Genetics (Harris, H., and Hirschhorn, K., eds.) Vol. 21, pp. 1–52, Plenum Press, New York.

    Google Scholar 

  32. Mahley, R.W. (1988) Apolipoprotein E: Cholesterol Transport Protein with Expanding Role in Cell Biology, Science 240, 622–630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul C. Maranhão.

About this article

Cite this article

Maranhão, R.C., Roland, I.A., Toffoletto, O. et al. Plasma kinetic behavior in hyperlipidemic subjects of a lipidic microemulsion that binds to low density lipoprotein receptors. Lipids 32, 627–633 (1997). https://doi.org/10.1007/s11745-997-0080-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0080-6

Keywords

Navigation