Skip to main content
Log in

Glioblastoma stem cell metabolism and immunity

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Despite enormous efforts being invested in the development of novel therapies for brain malignancies, there remains a dire need for effective treatments, particularly for pediatric glioblastomas. Their poor prognosis has been attributed to the fact that conventional therapies target tumoral cells, but not glioblastoma stem cells (GSCs). GSCs are characterized by self-renewal, tumorigenicity, poor differentiation, and resistance to therapy. These characteristics represent the fundamental tools needed to recapitulate the tumor and result in a relapse. The mechanisms by which GSCs alter metabolic cues and escape elimination by immune cells are discussed in this article, along with potential strategies to harness effector immune cells against GSCs. As cellular immunotherapy is making significant advances in a variety of cancers, leveraging this underexplored reservoir may result in significant improvements in the treatment options for brain malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

GSCs:

Glioblastoma stem cells

GBM:

Glioblastoma multiforme

pGBM:

Pediatric glioblastoma multiforme

SEER:

Surveillance, Epidemiology, and End Results Program

GTR:

Gross total resection

WHO:

World Health Organization

IARC:

International Agency for Research on Cancer

RF-EMF:

Radiofrequency electromagnetic fields

H3F3A:

H3.3 histone A gene

G34R/V:

Denotes the substitution of a glycine amino acid at position 34 with either arginine or valine

IDH1:

Isocitrate dehydrogenase 1

2-HG:

2-Hydroxyglutarate

TP53:

Tumor protein p53

17p13.1:

Sub-band 1 of band 3 of region 1 of the short arm of chromosome 17

PMS2:

PMS1 (postmeiotic segregation increased 1) homolog 2, mismatch repair system component

EGFRA:

Epidermal growth factor receptor A

EGFR:

Epidermal growth factor receptor

ATRX:

Alpha thalassemia X-linked intellectual disability

RB:

Retinoblastoma

MRI:

Magnetic resonance imaging

CSC:

Cancer stem cell

NSC:

Neural stem cells

SVZ:

Subventricular zone

AML:

Acute myeloid leukemia

MYC:

Myelocytomatosis oncogene

BAD:

BCL-2 (B cell leukemia/lymphoma 2)-associated agonist of cell death

NK:

Natural killer cell

DCs:

Dendritic cells

CTLs:

Cytotoxic T Lymphocytes

Th cells:

Helper CD4+ T cells

TNF:

Tumor necrosis factor

NCRs:

Natural cytotoxicity receptors

NKp30:

Natural cytotoxicity triggering receptor 3

NKp44:

Natural cytotoxicity triggering receptor 2

NKp46:

Natural cytotoxicity triggering receptor 1

CD336:

Cluster of differentiation 336

PCNA:

Proliferating cell nuclear antigen

B7H6:

Natural killer cell cytotoxicity receptor 3 ligand 1

MHC:

Major histocompatibility complex

NKG2A:

NKG2-A/NKG2-B type II integral membrane protein-like

HLA:

Human leukocyte antigen

DNAM-1:

DNAX (DNA polymerase III subunit gamma) accessory molecule

NKG2D:

Natural killer group 2 member D protein

MICA/B:

MHC class I polypeptide-related sequence A/B

ULBP:

UL16-binding protein

ADCC:

Antibody-dependent cellular cytotoxicity

FasL:

Fas ligand

TRAIL:

TNF superfamily member 10

DR4:

Death receptor 4

DR5:

Death receptor 5

IFN-γ:

Interferon gamma

KIRs:

Killer cell immunoglobulin-like receptors

Tregs:

Regulatory T cells

MDSCs:

Myeloid-derived suppressor cells

KLRK1:

Killer cell lectin-like receptor K1

PROM:

Prominin-1 gene

mRNA:

Messenger ribonucleic acid

CD133:

Cluster of differentiation 133

THPA:

The Human Protein Atlas

DAMPS:

Damage-associated molecular patterns

PRRs:

Pattern recognition receptors

TLRs:

Toll-like receptors

NOD:

Nucleotide binding oligomerization domain

TME:

Tumor microenvironment

IL-2:

Interleukin 2

PDL1:

Programmed cell death ligand 1

CTLA:

Cytotoxic T lymphocytes associated protein

TGF-β:

Transforming growth factor-beta

IL-10:

Interleukin 10

IL-6:

Interleukin 6

IDO1:

Indoleamine-2,3-dioxygenase-1

TAM:

Tumor-associated macrophage

pLGG:

Pediatric low grade glioma

pHGG:

High-grade gliomas

DIPG:

Diffuse intrinsic pontine glioma

Th1 cells:

Type 1 T helper cells

G34R:

Denotes the substitution of a glycine amino acid at position 34 with arginine

K27M:

Denotes the substitution of a lysine amino acid at position 27 with methionine

CXCR2:

C-X-C motif chemokine receptor 2

RNA:

Ribonucleic acid

OXPHOS:

Oxidative phosphorylation

NANOG:

Nanog homeobox

OCT4:

Octamer-binding transcription factor 4

SOX4:

SRY (sex determining region of chr Y)-box transcription factor 4

GLUT1:

Glucose transporter 1

mTORC1:

MTOR (mammalian target of rapamycin) complex 1

HIF-1α:

Hypoxia-inducible factor 1 subunit alpha

HK2:

Hexokinase 2

PKM2:

Pyruvate kinase M2

MCT1:

Monocarboxylate transporter 1

SLC16A1:

Solute carrier family 16 member 1

MCT4:

Monocarboxylate transporter 4

SLC16A3:

Solute carrier family 16 member 3

PDK1:

Pyruvate dehydrogenase kinase 1

PFKFB4:

6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4

DNA:

Deoxyribonucleic acid

ROS:

Reactive oxygen species

PGC-1α:

Proliferator-activated receptor-gamma coactivator-1α

IMP2:

Marker insulin-like growth factor 2

NDUFS3:

NADH (nicotinamide adenine dinucleotide + hydrogen) ubiquinone oxidoreductase core subunit S3

NDUFS7:

NADH (nicotinamide adenine dinucleotide + hydrogen) ubiquinone oxidoreductase core subunit S7

NDUF3:

NADH:ubiquinone oxidoreductase complex assembly factor 3

RIP-ChIP:

RNA-binding protein immunoprecipitation-chromatin immunoprecipitation

U87MG:

Uppsala 87 Malignant Glioma

ATP:

Adenosine triphosphate

FAO:

Fatty acid oxidation

CD47:

Cluster of differentiation 133

SP1:

Specificity protein 1

SREBP1:

Sterol regulatory element-binding protein 1

SMCT2:

Sodium-coupled monocarboxylate transporter 2

SLC5A12:

Solute carrier family 5 (sodium/glucose cotransporter), member 12

p38:

P38 kinase

Jnk:

C-Jun NH2-terminal kinase

c-Jun:

Jun proto-oncogene

ERK:

Extracellular signal-regulated MAP kinase

STAT3:

Signal transducer and activator of transcription 3

NF-κB:

Nuclear factor of kappa B

JAK:

Janus kinase

BCL-XL:

B-cell lymphoma extra-large

MMPs:

Matrix metalloproteinases

VEGF:

Vascular endothelial growth factor

Foxp3:

Forkhead box P3 (FOXP3) protein

PI3K:

Phosphatidylinositol 3-kinase

AKT:

Protein kinase B

ALDH:

Aldehyde dehydrogenase

MAPK:

Mitogen-activated kinase-like protein

CARs:

Chimeric antigen receptors

PD1:

Programmed cell death 1

TIGIT:

T cell immunoreceptor with Ig and ITIM domains

BiKEs:

Bi-specific killer engagers

TriKEs:

Tri-specific killer engagers

αPD1:

Anti-PD1 antibody

αCTLA4:

Anti-CTLA4 antibody

IL-1β:

Interleukin-1 beta

TNF-α:

Tumor necrosis factor alpha

FOXO3:

Forkhead box O3 gene

AMPK:

Adenosine monophosphate-activated protein kinase

References

  1. Alvarado, A. G., Thiagarajan, P. S., Mulkearns-Hubert, E. E., Silver, D. J., Hale, J. S., Alban, T. J., … Lathia, J. D. (2017). Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell Stem Cell, 20(4), 450–461.e4. https://doi.org/10.1016/j.stem.2016.12.001

  2. Garnier, D., Renoult, O., Alves-Guerra, M.-C., Paris, F., & Pecqueur, C. (2019). Glioblastoma stem-like cells, metabolic strategy to kill a challenging target. Frontiers in Oncology, 9, 118. https://doi.org/10.3389/fonc.2019.00118

    Article  PubMed  PubMed Central  Google Scholar 

  3. Esparza, R., Azad, T. D., Feroze, A. H., Mitra, S. S., & Cheshier, S. H. (2015). Glioblastoma stem cells and stem cell-targeting immunotherapies. Journal of Neuro-Oncology, 123(3), 449–457. https://doi.org/10.1007/s11060-015-1729-x

    Article  CAS  PubMed  Google Scholar 

  4. Geller, M. A., & Miller, J. S. (2011). Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy, 3(12), 1445–1459. https://doi.org/10.2217/imt.11.131

    Article  CAS  PubMed  Google Scholar 

  5. National Cancer Institute. (n.d.). Surveillance, Epidemiology, and End Results (SEER) Program Explorer Application. Retrieved April 5, 2023, from https://seer.cancer.gov/statistics-network/explorer/application.html?site=661&data_type=5&graph_type=12&compareBy=sex&chk_sex_1=1&chk_sex_3=3&chk_sex_2=2&series=9&race=1&age_range=15&prev_duration=1&advopt_precision=1&hdn_view=1

  6. Lam, S., Lin, Y., Zinn, P., Su, J., & Pan, I.-W. (2018). Patient and treatment factors associated with survival among pediatric glioblastoma patients: A Surveillance, Epidemiology, and End Results study. Journal of Clinical Neuroscience, 47, 285–293. https://doi.org/10.1016/j.jocn.2017.10.041

    Article  PubMed  Google Scholar 

  7. Da, W., Xueli, C., Xiao, P., & Yian, X. (2020). Prognostic factors and survival prediction of pediatric glioblastomas: A population-based study. Turkish Neurosurgeryhttps://doi.org/10.5137/1019-5149.JTN.31915-20.2

  8. Hardell, L., Carlberg, M., & Mild, K. H. (2006). Case-control study of the association between the use of cellular and cordless telephones and malignant brain tumors diagnosed during 2000–2003. Environmental Research, 100(2), 232–241. https://doi.org/10.1016/j.envres.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  9. INTERPHONE Study Group. (2010). Brain tumour risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study. International Journal of Epidemiology, 39(3), 675–694. https://doi.org/10.1093/ije/dyq079

    Article  Google Scholar 

  10. Lahkola, A., Auvinen, A., Raitanen, J., Schoemaker, M. J., Christensen, H. C., Feychting, M., … Salminen, T. (2007). Mobile phone use and risk of glioma in 5 North European countries. International Journal of Cancer, 120(8), 1769–1775. https://doi.org/10.1002/ijc.22503

  11. World Health Organisation. (2011, May 31). IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. Retrieved July 5, 2023, from https://www.iarc.who.int/pressrelease/iarc-classifies-radiofrequency-electromagnetic-fields-as-possibly-carcinogenic-to-humans/

  12. Deltour, I., Poulsen, A. H., Johansen, C., Feychting, M., Johannesen, T. B., Auvinen, A., & Schüz, J. (2022). Time trends in mobile phone use and glioma incidence among males in the Nordic Countries, 1979–2016. Environment International, 168, 107487. https://doi.org/10.1016/j.envint.2022.107487

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baker, S. J., Ellison, D. W., & Gutmann, D. H. (2016). Pediatric gliomas as neurodevelopmental disorders. Glia, 64(6), 879–895. https://doi.org/10.1002/glia.22945

    Article  PubMed  Google Scholar 

  14. Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.-A., Jones, D. T. W., Konermann, C., … Pfister, S. M. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22(4), 425–437. https://doi.org/10.1016/j.ccr.2012.08.024

  15. Janke, R., Iavarone, A. T., & Rine, J. (2017). Oncometabolite D-2-hydroxyglutarate enhances gene silencing through inhibition of specific H3K36 histone demethylases. eLife, 6. https://doi.org/10.7554/eLife.22451

  16. Zong, H., Parada, L. F., & Baker, S. J. (2015). Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harbor Perspectives in Biology, 7(5), a020610. https://doi.org/10.1101/cshperspect.a020610

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jones, C., & Baker, S. J. (2014). Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nature Reviews. Cancer, 14(10). https://doi.org/10.1038/nrc3811

  18. Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S. (2021). CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-Oncology, 23(12 Suppl 2), iii1–iii105. https://doi.org/10.1093/neuonc/noab200

  19. Rowitch, D. H., & Kriegstein, A. R. (2010). Developmental genetics of vertebrate glial-cell specification. Nature, 468(7321), 214–222. https://doi.org/10.1038/nature09611

    Article  CAS  PubMed  Google Scholar 

  20. Takebayashi, H., & Ikenaka, K. (2015). Oligodendrocyte generation during mouse development. Glia, 63(8), 1350–1356. https://doi.org/10.1002/glia.22863

    Article  PubMed  Google Scholar 

  21. Yacob, M. S., & Johnston, D. L. (2016). Glioblastoma multiforme: A pediatric case series. Journal of Case Reports and Images in Oncology, 2, 18–22. https://doi.org/10.5348/Z10-2016-14-CS-5

    Article  Google Scholar 

  22. Wilne, S., Collier, J., Kennedy, C., Koller, K., Grundy, R., & Walker, D. (2007). Presentation of childhood CNS tumours: A systematic review and meta-analysis. The Lancet Oncology, 8(8), 685–695. https://doi.org/10.1016/S1470-2045(07)70207-3

    Article  PubMed  Google Scholar 

  23. Das, K. K., Mehrotra, A., Nair, A. P., Kumar, S., Srivastava, A. K., Sahu, R. N., & Kumar, R. (2012). Pediatric glioblastoma: Clinico-radiological profile and factors affecting the outcome. Child’s Nervous System, 28(12), 2055–2062. https://doi.org/10.1007/s00381-012-1890-x

    Article  PubMed  Google Scholar 

  24. McKinnon, C., Nandhabalan, M., Murray, S. A., & Plaha, P. (2021). Glioblastoma: Clinical presentation, diagnosis, and management. BMJ, 374, n1560. https://doi.org/10.1136/bmj.n1560

    Article  PubMed  Google Scholar 

  25. Ozawa, M., Brennan, P. M., Zienius, K., Kurian, K. M., Hollingworth, W., Weller, D., … Ben-Shlomo, Y. (2019). The usefulness of symptoms alone or combined for general practitioners in considering the diagnosis of a brain tumour: A case-control study using the clinical practice research database (CPRD) (2000–2014). BMJ Open, 9(8), e029686. https://doi.org/10.1136/bmjopen-2019-029686

  26. Ideguchi, M., Kajiwara, K., Goto, H., Sugimoto, K., Nomura, S., Ikeda, E., & Suzuki, M. (2015). MRI findings and pathological features in early-stage glioblastoma. Journal of Neuro-Oncology, 123(2), 289–297. https://doi.org/10.1007/s11060-015-1797-y

    Article  CAS  PubMed  Google Scholar 

  27. Verburg, N., Hoefnagels, F. W. A., Barkhof, F., Boellaard, R., Goldman, S., Guo, J., … De Witt Hamer, P. C. (2017). Diagnostic accuracy of neuroimaging to delineate diffuse gliomas within the brain: A meta-analysis. AJNR: American Journal of Neuroradiology, 38(10), 1884–1891. https://doi.org/10.3174/ajnr.A5368

  28. Wen, P. Y., Macdonald, D. R., Reardon, D. A., Cloughesy, T. F., Sorensen, A. G., Galanis, E., … Chang, S. M. (2010). Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(11), 1963–1972. https://doi.org/10.1200/JCO.2009.26.3541

  29. van den Bent, M. J., Wefel, J. S., Schiff, D., Taphoorn, M. J. B., Jaeckle, K., Junck, L., … Jacobs, A. H. (2011). Response assessment in neuro-oncology (a report of the RANO group): Assessment of outcome in trials of diffuse low-grade gliomas. The Lancet. Oncology, 12(6), 583–593. https://doi.org/10.1016/S1470-2045(11)70057-2

  30. Cohen, K. J., Heideman, R. L., Zhou, T., Holmes, E. J., Lavey, R. S., Bouffet, E., & Pollack, I. F. (2011). Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: A report from the Children’s Oncology Group. Neuro-Oncology, 13(4), 410–416. https://doi.org/10.1093/neuonc/noq205

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cohen, K. J., Pollack, I. F., Zhou, T., Buxton, A., Holmes, E. J., Burger, P. C., … Heideman, R. L. (2011). Temozolomide in the treatment of high-grade gliomas in children: A report from the Children’s Oncology Group. Neuro-Oncology, 13(3), 317–323. https://doi.org/10.1093/neuonc/noq191

  32. Warren, K. E. (2012). Diffuse intrinsic pontine glioma: Poised for progress. Frontiers in Oncology, 2, 205. https://doi.org/10.3389/fonc.2012.00205

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tallman, M. M., Zalenski, A. A., & Venere, M. (2021). Cancer stem cells in pediatric brain tumors. In W. Debinski (Ed.), Gliomas. Brisbane (AU): Exon Publications. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK570697/

  34. Rich, J. N., & Bao, S. (2007). Chemotherapy and cancer stem cells. Cell Stem Cell, 1(4), 353–355. https://doi.org/10.1016/j.stem.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  35. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews Cancer, 8(10), 755–768. https://doi.org/10.1038/nrc2499

    Article  CAS  PubMed  Google Scholar 

  36. Taylor, M. D., Poppleton, H., Fuller, C., Su, X., Liu, Y., Jensen, P., … Gilbertson, R. J. (2005). Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 8(4), 323–335. https://doi.org/10.1016/j.ccr.2005.09.001

  37. Milde, T., Kleber, S., Korshunov, A., Witt, H., Hielscher, T., Koch, P., … Witt, O. (2011). A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathologica, 122(5), 637–650. https://doi.org/10.1007/s00401-011-0866-3

  38. Huang, G.-H., Xu, Q.-F., Cui, Y.-H., Li, N., Bian, X.-W., & Lv, S.-Q. (2016). Medulloblastoma stem cells: Promising targets in medulloblastoma therapy. Cancer Science, 107(5), 583–589. https://doi.org/10.1111/cas.12925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun, Y., Xu, C., Pan, C., Chen, X., Geng, Y., Wu, Y., … Zhang, L. (2019). Diffuse intrinsic pontine gliomas exhibit cell biological and molecular signatures of fetal hindbrain-derived neural progenitor cells. Neuroscience Bulletin, 35(2), 216–224. https://doi.org/10.1007/s12264-018-00329-6

  40. Filbin, M. G., Tirosh, I., Hovestadt, V., Shaw, M. L., Escalante, L. E., Mathewson, N. D., … Suvà, M. L. (2018). Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science, 360(6386), 331–335. https://doi.org/10.1126/science.aao4750

  41. Friedman, G. K., Raborn, J., Kelly, V. M., Cassady, K. A., Markert, J. M., & Gillespie, G. Y. (2013). Pediatric glioma stem cells: Biologic strategies for oncolytic HSV virotherapy. Frontiers in Oncology, 3, 28. https://doi.org/10.3389/fonc.2013.00028

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abou-Antoun, T. J., Hale, J. S., Lathia, J. D., & Dombrowski, S. M. (2017). Brain cancer stem cells in adults and children: Cell biology and therapeutic implications. Neurotherapeutics, 14(2), 372–384. https://doi.org/10.1007/s13311-017-0524-0

    Article  PubMed  PubMed Central  Google Scholar 

  43. Siminovitch, L., McCulloch, E. A., & Till, J. E. (1963). The distribution of colony-forming cells among spleen colonies. Retrieved from https://tspace.library.utoronto.ca/handle/1807/2778

  44. Bifari, F., Pacelli, L., & Krampera, M. (2010). Immunological properties of embryonic and adult stem cells. World Journal of Stem Cells, 2(3), 50–60. https://doi.org/10.4252/wjsc.v2.i3.50

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lombard, A., Digregorio, M., Delcamp, C., Rogister, B., Piette, C., & Coppieters, N. (2021). The subventricular zone, a hideout for adult and pediatric high-grade glioma stem cells. Frontiers in Oncology, 10. Retrieved from https://www.frontiersin.org/articles/https://doi.org/10.3389/fonc.2020.614930

  46. Skoda, J., & Veselska, R. (2018). Cancer stem cells in sarcomas: Getting to the stemness core. Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(10), 2134–2139. https://doi.org/10.1016/j.bbagen.2018.07.006

  47. Genadry, K. C., Pietrobono, S., Rota, R., & Linardic, C. M. (2018). Soft tissue sarcoma cancer stem cells: An overview. Frontiers in Oncology, 8. Retrieved from https://www.frontiersin.org/articles/https://doi.org/10.3389/fonc.2018.00475

  48. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  Google Scholar 

  49. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951. https://doi.org/10.1158/0008-5472.CAN-05-2018

    Article  CAS  PubMed  Google Scholar 

  50. Ho, M. M., Ng, A. V., Lam, S., & Hung, J. Y. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827–4833. https://doi.org/10.1158/0008-5472.CAN-06-3557

    Article  CAS  PubMed  Google Scholar 

  51. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., & De Maria, R. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115. https://doi.org/10.1038/nature05384

    Article  CAS  PubMed  Google Scholar 

  52. Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., … De Maria, R. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation, 15(3), 504–514. https://doi.org/10.1038/sj.cdd.4402283

  53. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., & Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

    CAS  PubMed  Google Scholar 

  54. Gimple, R. C., Bhargava, S., Dixit, D., & Rich, J. N. (2019). Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes & Development, 33(11–12), 591–609. https://doi.org/10.1101/gad.324301.119

    Article  CAS  Google Scholar 

  55. Caretti, V., Bugiani, M., Freret, M., Schellen, P., Jansen, M., van Vuurden, D., … Monje, M. (2014). Subventricular spread of diffuse intrinsic pontine glioma. Acta Neuropathologica, 128(4), 605–607. https://doi.org/10.1007/s00401-014-1307-x

  56. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., & Kornblum, H. I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences, 100(25), 15178–15183. https://doi.org/10.1073/pnas.2036535100

    Article  CAS  Google Scholar 

  57. Goffart, N., Lombard, A., Lallemand, F., Kroonen, J., Nassen, J., Di Valentin, E., … Rogister, B. (2017). CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro-Oncology, 19(1), 66–77. https://doi.org/10.1093/neuonc/now136

  58. Valdés-Rives, S. A., Casique-Aguirre, D., Germán-Castelán, L., Velasco-Velázquez, M. A., & González-Arenas, A. (2017). Apoptotic signaling pathways in glioblastoma and therapeutic implications. BioMed Research International, 2017, 7403747. https://doi.org/10.1155/2017/7403747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morimoto, T., Nakazawa, T., Maeoka, R., Nakagawa, I., Tsujimura, T., & Matsuda, R. (2023). Natural killer cell-based immunotherapy against glioblastoma. International Journal of Molecular Sciences, 24(3), 2111. https://doi.org/10.3390/ijms24032111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown, N. F., Carter, T. J., Ottaviani, D., & Mulholland, P. (2018). Harnessing the immune system in glioblastoma. British Journal of Cancer, 119(10), 1171–1181. https://doi.org/10.1038/s41416-018-0258-8

    Article  PubMed  PubMed Central  Google Scholar 

  61. Daubon, T., Hemadou, A., Romero Garmendia, I., & Saleh, M. (2020). Glioblastoma immune landscape and the potential of new immunotherapies. Frontiers in Immunology, 11, 585616. https://doi.org/10.3389/fimmu.2020.585616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pearson, J. R. D., Cuzzubbo, S., McArthur, S., Durrant, L. G., Adhikaree, J., Tinsley, C. J., … McArdle, S. E. B. (2020). Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Frontiers in Immunology, 11, 582106. https://doi.org/10.3389/fimmu.2020.582106

  63. Gravina, G. L., Colapietro, A., Mancini, A., Rossetti, A., Martellucci, S., Ventura, L., … Festuccia, C. (2022). ATX-101, a peptide targeting PCNA, has antitumor efficacy alone or in combination with radiotherapy in murine models of human glioblastoma. Cancers, 14(2), 289. https://doi.org/10.3390/cancers14020289

  64. Jiang, T., Wu, W., Zhang, H., Zhang, X., Zhang, D., Wang, Q., … Hang, C. (2017). High expression of B7-H6 in human glioma tissues promotes tumor progression. Oncotarget, 8(23), 37435–37447. https://doi.org/10.18632/oncotarget.16391

  65. Ravindranath, M. H., Filippone, E. J., Devarajan, A., & Asgharzadeh, S. (2019). Enhancing natural killer and CD8+ T cell-mediated anticancer cytotoxicity and proliferation of CD8+ T cells with HLA-E monospecific monoclonal antibodies. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 38(2), 38–59. https://doi.org/10.1089/mab.2018.0043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lupo, K. B., & Matosevic, S. (2020). CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. Journal of Hematology & Oncology, 13(1), 76. https://doi.org/10.1186/s13045-020-00913-2

    Article  CAS  Google Scholar 

  67. Chitadze, G., & Kabelitz, D. (2022). Immune surveillance in glioblastoma: Role of the NKG2D system and novel cell-based therapeutic approaches. Scandinavian Journal of Immunology, 96(2), e13201. https://doi.org/10.1111/sji.13201

    Article  CAS  PubMed  Google Scholar 

  68. Mitsutake, Y., Hiromatsu, Y., Saisho, M., Tokunaga, N., Ichikawa, Y., Kaji, M., & Irie, K. (1986). [Immunological assay of the CA-125 value in pleural effusion in various types of pleuritis--Its application as a differential diagnostic parameter of tuberculous or carcinomatous pleuritis]. Gan No Rinsho. Japan Journal of Cancer Clinics, 32(5), 453–457.

  69. Wiedemuth, R., Klink, B., Fujiwara, M., Schröck, E., Tatsuka, M., Schackert, G., & Temme, A. (2016). Janus face-like effects of Aurora B inhibition: Antitumoral mode of action versus induction of aneuploid progeny. Carcinogenesis, 37(10), 993–1003. https://doi.org/10.1093/carcin/bgw083

    Article  CAS  PubMed  Google Scholar 

  70. Barrow, A. D., Edeling, M. A., Trifonov, V., Luo, J., Goyal, P., Bohl, B., … Colonna, M. (2018). Natural killer cells control tumor growth by sensing a growth factor. Cell, 172(3), 534–548.e19. https://doi.org/10.1016/j.cell.2017.11.037

  71. Enderlin, M., Kleinmann, E. V., Struyf, S., Buracchi, C., Vecchi, A., Kinscherf, R., … Dinsart, C. (2009). TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Therapy, 16(2), 149–160. https://doi.org/10.1038/cgt.2008.62

  72. Zhong, J., Yang, X., Chen, J., He, K., Gao, X., Wu, X., … Zhang, N. (2022). Circular EZH2-encoded EZH2–92aa mediates immune evasion in glioblastoma via inhibition of surface NKG2D ligands. Nature Communications, 13(1), 4795. https://doi.org/10.1038/s41467-022-32311-2

  73. Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W. D., Tosti, A., … Velardi, A. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science (New York, N.Y.), 295(5562), 2097–2100. https://doi.org/10.1126/science.1068440

  74. Kim, H., Kim, J., Sa, J. K., Ryu, B.-K., Park, K.-J., Kim, J., … Kang, S.-H. (2022). Calcipotriol, a synthetic Vitamin D analog, promotes antitumor immunity via CD4+T-dependent CTL/NK cell activation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 154, 113553. https://doi.org/10.1016/j.biopha.2022.113553

  75. Salazar, N., Carlson, J. C., Huang, K., Zheng, Y., Oderup, C., Gross, J., … Zabel, B. A. (2018). A chimeric antibody against ACKR3/CXCR7 in combination with TMZ activates immune responses and extends survival in mouse GBM models. Molecular Therapy: The Journal of the American Society of Gene Therapy, 26(5), 1354–1365. https://doi.org/10.1016/j.ymthe.2018.02.030

  76. Glumac, P. M., & LeBeau, A. M. (2018). The role of CD133 in cancer: A concise review. Clinical and Translational Medicine, 7(1), 18. https://doi.org/10.1186/s40169-018-0198-1

    Article  PubMed  PubMed Central  Google Scholar 

  77. Srivastava, S., Jackson, C., Kim, T., Choi, J., & Lim, M. (2019). A characterization of dendritic cells and their role in immunotherapy in glioblastoma: From preclinical studies to clinical trials. Cancers, 11(4), 537. https://doi.org/10.3390/cancers11040537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Friedrich, M., Hahn, M., Michel, J., Sankowski, R., Kilian, M., Kehl, N., … Bunse, L. (2023). Dysfunctional dendritic cells limit antigen-specific T cell response in glioma. Neuro-Oncology, 25(2), 263–276. https://doi.org/10.1093/neuonc/noac138

  79. Xu, L. W., Chow, K. K. H., Lim, M., & Li, G. (2014). Current vaccine trials in glioblastoma: A review. Journal of Immunology Research, 2014, 796856. https://doi.org/10.1155/2014/796856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pombo Antunes, A. R., Scheyltjens, I., Duerinck, J., Neyns, B., Movahedi, K., & Van Ginderachter, J. A. (2020). Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife, 9, e52176. https://doi.org/10.7554/eLife.52176

  81. Wang, H., Zhou, H., Xu, J., Lu, Y., Ji, X., Yao, Y., … Wan, J. (2021). Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Letters, 496, 134–143. https://doi.org/10.1016/j.canlet.2020.09.028

  82. Tang, O. Y., Binder, Z. A., O’Rourke, D. M., & Bagley, S. J. (2023). Optimizing CAR-T therapy for glioblastoma. Molecular Diagnosis & Therapyhttps://doi.org/10.1007/s40291-023-00671-0

  83. Dhatchinamoorthy, K., Colbert, J. D., & Rock, K. L. (2021). Cancer immune evasion through loss of MHC class I antigen presentation. Frontiers in Immunology, 12, 636568. https://doi.org/10.3389/fimmu.2021.636568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nduom, E. K., Weller, M., & Heimberger, A. B. (2015). Immunosuppressive mechanisms in glioblastoma. Neuro-Oncology, 17 Suppl 7(Suppl 7), vii9–vii14. https://doi.org/10.1093/neuonc/nov151

  85. Silver, A., Feier, D., Ghosh, T., Rahman, M., Huang, J., Sarkisian, M. R., & Deleyrolle, L. P. (2022). Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Frontiers in Oncology, 12, 1022716. https://doi.org/10.3389/fonc.2022.1022716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Hooren, L., Handgraaf, S. M., Kloosterman, D. J., Karimi, E., van Mil, L. W. H. G., Gassama, A. A., … Akkari, L. (2023). CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma. Nature Cancer, 4(5), 665–681. https://doi.org/10.1038/s43018-023-00547-6

  87. Yoshioka, S., Ikeda, T., Fukuchi, S., Kawai, Y., Ohta, K., Murakami, H., … Asai, A. (2022). Identification and characterization of a novel dual inhibitor of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase. International journal of tryptophan research: IJTR, 15, 11786469221138456. https://doi.org/10.1177/11786469221138456

  88. Zhang, Y., Jin, T., Dou, Z., Wei, B., Zhang, B., & Sun, C. (2022). The dual role of the CD95 and CD95L signaling pathway in glioblastoma. Frontiers in Immunology, 13, 1029737. https://doi.org/10.3389/fimmu.2022.1029737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ross, J. L., Velazquez Vega, J., Plant, A., MacDonald, T. J., Becher, O. J., & Hambardzumyan, D. (2021). Tumour immune landscape of paediatric high-grade gliomas. Brain: A Journal of Neurology, 144(9), 2594–2609. https://doi.org/10.1093/brain/awab155

  90. Hwang, E. I., Sayour, E. J., Flores, C. T., Grant, G., Wechsler-Reya, R., Hoang-Minh, L. B., … Pollack, I. F. (2022). The current landscape of immunotherapy for pediatric brain tumors. Nature Cancer, 3(1), 11–24. https://doi.org/10.1038/s43018-021-00319-0

  91. Griesinger, A. M., Birks, D. K., Donson, A. M., Amani, V., Hoffman, L. M., Waziri, A., … Foreman, N. K. (2013). Characterization of distinct immunophenotypes across pediatric brain tumor types. Journal of Immunology (Baltimore, Md.: 1950), 191(9), 4880–4888. https://doi.org/10.4049/jimmunol.1301966

  92. Robinson, M. H., Vasquez, J., Kaushal, A., MacDonald, T. J., Velázquez Vega, J. E., Schniederjan, M., & Dhodapkar, K. (2020). Subtype and grade-dependent spatial heterogeneity of T-cell infiltration in pediatric glioma. Journal for Immunotherapy of Cancer, 8(2), e001066. https://doi.org/10.1136/jitc-2020-001066

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lieberman, N. A. P., DeGolier, K., Kovar, H. M., Davis, A., Hoglund, V., Stevens, J., … Crane, C. A. (2019). Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: Implications for development of immunotherapy. Neuro-Oncology, 21(1), 83–94. https://doi.org/10.1093/neuonc/noy145

  94. Lin, G. L., Nagaraja, S., Filbin, M. G., Suvà, M. L., Vogel, H., & Monje, M. (2018). Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathologica Communications, 6(1), 51. https://doi.org/10.1186/s40478-018-0553-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lei, M. M. L., & Lee, T. K. W. (2021). Cancer stem cells: Emerging key players in immune evasion of cancers. Frontiers in Cell and Developmental Biology, 9, 692940. https://doi.org/10.3389/fcell.2021.692940

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhu, X., Chen, H.-H., Gao, C.-Y., Zhang, X.-X., Jiang, J.-X., Zhang, Y., … Chen, Z.-G. (2020). Energy metabolism in cancer stem cells. World Journal of Stem Cells, 12(6), 448–461. https://doi.org/10.4252/wjsc.v12.i6.448

  97. Peiris-Pagès, M., Martinez-Outschoorn, U. E., Pestell, R. G., Sotgia, F., & Lisanti, M. P. (2016). Cancer stem cell metabolism. Breast Cancer Research, 18(1), 55. https://doi.org/10.1186/s13058-016-0712-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaur, J., & Bhattacharyya, S. (2021). Cancer stem cells: Metabolic characterization for targeted cancer therapy. Frontiers in Oncology, 11. Retrieved from https://www.frontiersin.org/articles/https://doi.org/10.3389/fonc.2021.756888

  99. Yu, L., Ji, K.-Y., Zhang, J., Xu, Y., Ying, Y., Mai, T., … Xu, Y. (2019). Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer. Protein & Cell, 10(9), 668–680. https://doi.org/10.1007/s13238-019-0637-9

  100. Wang, Z.-H., Peng, W.-B., Zhang, P., Yang, X.-P., & Zhou, Q. (2021). Lactate in the tumour microenvironment: From immune modulation to therapy. eBioMedicine, 73. https://doi.org/10.1016/j.ebiom.2021.103627

  101. Lim, K. S., Lim, K. J., Price, A. C., Orr, B. A., Eberhart, C. G., & Bar, E. E. (2014). Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner. Oncogene, 33(35), 4433–4441. https://doi.org/10.1038/onc.2013.390

    Article  CAS  PubMed  Google Scholar 

  102. Goidts, V., Bageritz, J., Puccio, L., Nakata, S., Zapatka, M., Barbus, S., … Radlwimmer, B. (2012). RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene, 31(27), 3235–3243. https://doi.org/10.1038/onc.2011.490

  103. Ye, X.-Q., Li, Q., Wang, G.-H., Sun, F.-F., Huang, G.-J., Bian, X.-W., … Qian, G.-S. (2011). Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. International Journal of Cancer, 129(4), 820–831. https://doi.org/10.1002/ijc.25944

  104. Yasuda, T., Ishimoto, T., & Baba, H. (2021). Conflicting metabolic alterations in cancer stem cells and regulation by the stromal niche. Regenerative Therapy, 17, 8–12. https://doi.org/10.1016/j.reth.2021.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sriramkumar, S., Sood, R., Huntington, T. D., Ghobashi, A. H., Vuong, T. T., Metcalfe, T. X., … O’Hagan, H. M. (2022). Platinum-induced mitochondrial OXPHOS contributes to cancer stem cell enrichment in ovarian cancer. Journal of Translational Medicine, 20(1), 246. https://doi.org/10.1186/s12967-022-03447-y

  106. Janiszewska, M., Suvà, M. L., Riggi, N., Houtkooper, R. H., Auwerx, J., Clément-Schatlo, V., … Stamenkovic, I. (2012). Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes & Development, 26(17), 1926–1944. https://doi.org/10.1101/gad.188292.112

  107. Sancho, P., Burgos-Ramos, E., Tavera, A., Bou Kheir, T., Jagust, P., Schoenhals, M., … Heeschen, C. (2015). MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabolism, 22(4), 590–605. https://doi.org/10.1016/j.cmet.2015.08.015

  108. Vlashi, E., Lagadec, C., Vergnes, L., Matsutani, T., Masui, K., Poulou, M., … Pajonk, F. (2011). Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences, 108(38), 16062–16067. https://doi.org/10.1073/pnas.1106704108

  109. Jiang, N., Xie, B., Xiao, W., Fan, M., Xu, S., Duan, Y., … Li, J. J. (2022). Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nature Communications, 13(1), 1511. https://doi.org/10.1038/s41467-022-29137-3

  110. Zhu, Y., Lin, X., Zhou, X., Prochownik, E. V., Wang, F., & Li, Y. (2022). Posttranslational control of lipogenesis in the tumor microenvironment. Journal of Hematology & Oncology, 15(1), 120. https://doi.org/10.1186/s13045-022-01340-1

    Article  CAS  Google Scholar 

  111. Ferguson, L. P., Diaz, E., & Reya, T. (2021). The role of the microenvironment and immune system in regulating stem cell fate in cancer. Trends in Cancer, 7(7), 624–634. https://doi.org/10.1016/j.trecan.2020.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hirsch, H. A., Iliopoulos, D., & Struhl, K. (2013). Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 972–977. https://doi.org/10.1073/pnas.1221055110

    Article  PubMed  Google Scholar 

  113. Johnson, D. E., O’Keefe, R. A., & Grandis, J. R. (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews. Clinical Oncology, 15(4), 234–248. https://doi.org/10.1038/nrclinonc.2018.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Park, H.-B., Paik, D.-J., Jang, E., Hong, S., & Youn, J. (2004). Acquisition of anergic and suppressive activities in transforming growth factor-beta-costimulated CD4+CD25- T cells. International Immunology, 16(8), 1203–1213. https://doi.org/10.1093/intimm/dxh123

    Article  CAS  PubMed  Google Scholar 

  115. Dennis, K. L., Blatner, N. R., Gounari, F., & Khazaie, K. (2013). Current status of interleukin-10 and regulatory T-cells in cancer. Current Opinion in Oncology, 25(6), 637–645. https://doi.org/10.1097/CCO.0000000000000006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Park, S.-J., Nakagawa, T., Kitamura, H., Atsumi, T., Kamon, H., Sawa, S.-I., … Hirano, T. (2004). IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. Journal of Immunology (Baltimore, Md.: 1950), 173(6), 3844–3854. https://doi.org/10.4049/jimmunol.173.6.3844

  117. Ozawa, Y., Yamamuro, S., Sano, E., Tatsuoka, J., Hanashima, Y., Yoshimura, S., … Yoshino, A. (2020). Indoleamine 2,3-dioxygenase 1 is highly expressed in glioma stem cells. Biochemical and Biophysical Research Communications, 524(3), 723–729. https://doi.org/10.1016/j.bbrc.2020.01.148

  118. Ju, J.-M., Nam, G., Lee, Y.-K., Jung, M., Chang, H., Kim, W., … Choi, E. Y. (2021). IDO1 scavenges reactive oxygen species in myeloid-derived suppressor cells to prevent graft-versus-host disease. Proceedings of the National Academy of Sciences, 118(10), e2011170118. https://doi.org/10.1073/pnas.2011170118

  119. Opitz, C. A., Somarribas Patterson, L. F., Mohapatra, S. R., Dewi, D. L., Sadik, A., Platten, M., & Trump, S. (2020). The therapeutic potential of targeting tryptophan catabolism in cancer. British Journal of Cancer, 122(1), 30–44. https://doi.org/10.1038/s41416-019-0664-6

    Article  CAS  PubMed  Google Scholar 

  120. Stone, T. W., & Williams, R. O. (2023). Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends in Pharmacological Sciences, 44(7), 442–456. https://doi.org/10.1016/j.tips.2023.04.006

    Article  CAS  PubMed  Google Scholar 

  121. Lužnik, Z., Anchouche, S., Dana, R., & Yin, J. (2020). Regulatory T cells in angiogenesis. Journal of Immunology (Baltimore, Md.: 1950), 205(10), 2557–2565. https://doi.org/10.4049/jimmunol.2000574

  122. Liu, C., Chikina, M., Deshpande, R., Menk, A. V., Wang, T., Tabib, T., … Vignali, D. A. A. (2019). Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity, 51(2), 381–397.e6. https://doi.org/10.1016/j.immuni.2019.06.017

  123. Da-Veiga, M.-A., Coppieters, N., Lombard, A., Rogister, B., Neirinckx, V., & Piette, C. (2023). Comprehensive profiling of stem-like features in pediatric glioma cell cultures and their relation to the subventricular zone. Acta Neuropathologica Communications, 11(1), 96. https://doi.org/10.1186/s40478-023-01586-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Thirant, C., Bessette, B., Varlet, P., Puget, S., Cadusseau, J., Dos Reis Tavares, S., … Junier, M.-P. (2011). Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS ONE, 6(1), e16375. https://doi.org/10.1371/journal.pone.0016375

  125. De Wet, L., Williams, A., Gillard, M., Kregel, S., Lamperis, S., Gutgesell, L. C., … Vander Griend, D. J. (2022). SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene, 41(8), 1190–1202. https://doi.org/10.1038/s41388-021-02157-x

  126. Da-Veiga, M.-A., Rogister, B., Lombard, A., Neirinckx, V., & Piette, C. (2022). Glioma stem cells in pediatric high-grade gliomas: From current knowledge to future perspectives. Cancers, 14(9), 2296. https://doi.org/10.3390/cancers14092296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Neradil, J., & Veselska, R. (2015). Nestin as a marker of cancer stem cells. Cancer Science, 106(7), 803–811. https://doi.org/10.1111/cas.12691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Surowiec, R. K., Ferris, S. F., Apfelbaum, A., Espinoza, C., Mehta, R. K., Monchamp, K., … Galban, S. (2021). Transcriptomic analysis of diffuse intrinsic pontine glioma (DIPG) identifies a targetable ALDH-positive subset of highly tumorigenic cancer stem-like cells. Molecular Cancer Research, 19(2), 223–239. https://doi.org/10.1158/1541-7786.MCR-20-0464

  129. Murakami, T., Nakazawa, T., Natsume, A., Nishimura, F., Nakamura, M., Matsuda, R., … Nakase, H. (2018). Novel human NK cell line carrying CAR targeting EGFRvIII induces antitumor effects in glioblastoma cells. Anticancer Research, 38(9), 5049–5056. https://doi.org/10.21873/anticanres.12824

  130. Khan, M., Arooj, S., & Wang, H. (2020). NK cell-based immune checkpoint inhibition. Frontiers in Immunology, 11, 167. https://doi.org/10.3389/fimmu.2020.00167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sönmez, C., Wölfer, J., Holling, M., Brokinkel, B., Stummer, W., Wiendl, H., … Grauer, O. M. (2022). Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Scientific Reports, 12(1), 6769. https://doi.org/10.1038/s41598-022-10680-4

  132. Weiss, T., Schneider, H., Silginer, M., Steinle, A., Pruschy, M., Polić, B., … Roth, P. (2018). NKG2D-dependent antitumor effects of chemotherapy and radiotherapy against glioblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(4), 882–895. https://doi.org/10.1158/1078-0432.CCR-17-1766

  133. Pawlowski, K. D., Duffy, J. T., Tiwari, A., Zannikou, M., & Balyasnikova, I. V. (2023). Bi-specific killer cell engager enhances NK cell activity against interleukin-13 receptor alpha-2 positive gliomas. Cells, 12(13), 1716. https://doi.org/10.3390/cells12131716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Datsi, A., & Sorg, R. V. (2021). Dendritic cell vaccination of glioblastoma: Road to success or dead end. Frontiers in Immunology, 12, 770390. https://doi.org/10.3389/fimmu.2021.770390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rojas, L. A., Sethna, Z., Soares, K. C., Olcese, C., Pang, N., Patterson, E., … Balachandran, V. P. (2023). Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 618(7963), 144–150. https://doi.org/10.1038/s41586-023-06063-y

  136. Catania, G., Rodella, G., Vanvarenberg, K., Préat, V., & Malfanti, A. (2023). Combination of hyaluronic acid conjugates with immunogenic cell death inducer and CpG for glioblastoma local chemo-immunotherapy elicits an immune response and induces long-term survival. Biomaterials, 294, 122006. https://doi.org/10.1016/j.biomaterials.2023.122006

    Article  CAS  PubMed  Google Scholar 

  137. Segura-Collar, B., Hiller-Vallina, S., de Dios, O., Caamaño-Moreno, M., Mondejar-Ruescas, L., Sepulveda-Sanchez, J. M., & Gargini, R. (2023). Advanced immunotherapies for glioblastoma: Tumor neoantigen vaccines in combination with immunomodulators. Acta Neuropathologica Communications, 11(1), 79. https://doi.org/10.1186/s40478-023-01569-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xun, Y., Yang, H., Kaminska, B., & You, H. (2021). Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. Journal of Hematology & Oncology, 14(1), 176. https://doi.org/10.1186/s13045-021-01191-2

    Article  CAS  Google Scholar 

  139. Parker, S., McDowall, C., Sanchez-Perez, L., Osorio, C., Duncker, P. C., Briley, A., … Chandramohan, V. (2023). Immunotoxin-αCD40 therapy activates innate and adaptive immunity and generates a durable antitumor response in glioblastoma models. Science Translational Medicine, 15(682), eabn5649. https://doi.org/10.1126/scitranslmed.abn5649

  140. Didenko, V. V., Ngo, H. N., Minchew, C., & Baskin, D. S. (2002). Apoptosis of T lymphocytes invading glioblastomas multiforme: A possible tumor defense mechanism. Journal of Neurosurgery, 96(3), 580–584. https://doi.org/10.3171/jns.2002.96.3.0580

    Article  CAS  PubMed  Google Scholar 

  141. Kollis, P. M., Ebert, L. M., Toubia, J., Bastow, C. R., Ormsby, R. J., Poonnoose, S. I., … Gargett, T. (2022). Characterising distinct migratory profiles of infiltrating T-cell subsets in human glioblastoma. Frontiers in Immunology, 13, 850226. https://doi.org/10.3389/fimmu.2022.850226

  142. Chen, D., Varanasi, S. K., Hara, T., Traina, K., Sun, M., McDonald, B., … Kaech, S. M. (2023). CTLA-4 blockade induces a microglia-Th1 cell partnership that stimulates microglia phagocytosis and anti-tumor function in glioblastoma. Immunity, 56(9), 2086–2104.e8. https://doi.org/10.1016/j.immuni.2023.07.015

  143. Amoozgar, Z., Kloepper, J., Ren, J., Tay, R. E., Kazer, S. W., Kiner, E., … Jain, R. K. (2021). Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nature Communications, 12(1), 2582. https://doi.org/10.1038/s41467-021-22885-8

  144. Kesarwani, P., Prabhu, A., Kant, S., Kumar, P., Graham, S. F., Buelow, K. L., … Chinnaiyan, P. (2018). Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(15), 3632–3643. https://doi.org/10.1158/1078-0432.CCR-18-0041

  145. Ahluwalia, M. S., Reardon, D. A., Abad, A. P., Curry, W. T., Wong, E. T., Belal, A., … Fenstermaker, R. (2019). SurVaxM with standard therapy in newly diagnosed glioblastoma: Phase II trial update. Journal of Clinical Oncology, 37(15_suppl), 2016–2016. https://doi.org/10.1200/JCO.2019.37.15_suppl.2016

  146. Fenstermaker, R. A., Ciesielski, M. J., Qiu, J., Yang, N., Frank, C. L., Lee, K. P., … Hutson, A. D. (2016). Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunology, Immunotherapy, 65(11), 1339–1352. https://doi.org/10.1007/s00262-016-1890-x

  147. Flores, C., Wildes, T., Dean, B. D., Moore, G., Drake, J., Abraham, R., … Mitchell, D. (2019). Massive clonal expansion of medulloblastoma-specific T cells during adoptive cellular therapy. Science Advances, 5(11), eaav9879. https://doi.org/10.1126/sciadv.aav9879

  148. Choi, B. D., Kuan, C.-T., Cai, M., Archer, G. E., Mitchell, D. A., Gedeon, P. C., … Sampson, J. H. (2013). Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proceedings of the National Academy of Sciences, 110(1), 270–275. https://doi.org/10.1073/pnas.1219817110

  149. Choi, B. D., Yu, X., Castano, A. P., Bouffard, A. A., Schmidts, A., Larson, R. C., … Maus, M. V. (2019). CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nature Biotechnology, 37(9), 1049–1058. https://doi.org/10.1038/s41587-019-0192-1

  150. O’Rourke, D. M., Nasrallah, M. P., Desai, A., Melenhorst, J. J., Mansfield, K., Morrissette, J. J. D., … Maus, M. V. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 9(399), eaaa0984. https://doi.org/10.1126/scitranslmed.aaa0984

  151. Mount, C. W., Majzner, R. G., Sundaresh, S., Arnold, E. P., Kadapakkam, M., Haile, S., … Mackall, C. L. (2018). Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nature Medicine, 24(5), 572–579. https://doi.org/10.1038/s41591-018-0006-x

  152. Majzner, R. G., Theruvath, J. L., Nellan, A., Heitzeneder, S., Cui, Y., Mount, C. W., … Mackall, C. L. (2019). CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clinical Cancer Research, 25(8), 2560–2574. https://doi.org/10.1158/1078-0432.CCR-18-0432

  153. Patterson, J. D., Henson, J. C., Breese, R. O., Bielamowicz, K. J., & Rodriguez, A. (2020). CAR T cell therapy for pediatric brain tumors. Frontiers in Oncology, 10. Retrieved from https://www.frontiersin.org/journals/oncology/articles/https://doi.org/10.3389/fonc.2020.01582

  154. Sato, A., Sunayama, J., Okada, M., Watanabe, E., Seino, S., Shibuya, K., … Kitanaka, C. (2012). Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Translational Medicine, 1(11), 811–824. https://doi.org/10.5966/sctm.2012-0058

  155. Shibuya, K., Okada, M., Suzuki, S., Seino, M., Seino, S., Takeda, H., & Kitanaka, C. (2014). Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget, 6(2), 651–661.

    Article  PubMed Central  Google Scholar 

  156. Zhao, H., Yan, C., Hu, Y., Mu, L., Liu, S., Huang, K., … Qin, J. (2020). Differentiated cancer cell-originated lactate promotes the self-renewal of cancer stem cells in patient-derived colorectal cancer organoids. Cancer Letters, 493, 236–244. https://doi.org/10.1016/j.canlet.2020.08.044

  157. Kim, S., & Singh, S. V. (2022). Monocarboxylate transporter 1 is a novel target for breast cancer stem like-cell inhibition by diallyl trisulfide. Molecular Carcinogenesis, 61(8), 752–763. https://doi.org/10.1002/mc.23415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Longhitano, L., Vicario, N., Tibullo, D., Giallongo, C., Broggi, G., Caltabiano, R., … Li Volti, G. (2022). Lactate induces the expressions of MCT1 and HCAR1 to promote tumor growth and progression in glioblastoma. Frontiers in Oncology, 12, 871798. https://doi.org/10.3389/fonc.2022.871798

  159. Mohan, A. A., Tomaszewski, W. H., Haskell-Mendoza, A. P., Hotchkiss, K. M., Singh, K., Reedy, J. L., … Khasraw, M. (2021). Targeting immunometabolism in glioblastoma. Frontiers in Oncology, 11, 696402. https://doi.org/10.3389/fonc.2021.696402

Download references

Author information

Authors and Affiliations

Authors

Contributions

MEI: conceptualization; JH, MM, ASC, and MEI: resource collection, writing, and figure preparation; ASC and MEI: design and reviewing of the manuscript. All the authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Alejandro Schcolnik-Cabrera or Mark E. Issa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not required.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawly, J., Murcar, M.G., Schcolnik-Cabrera, A. et al. Glioblastoma stem cell metabolism and immunity. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10183-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10183-w

Keywords

Navigation