Skip to main content

Advertisement

Log in

Metabolic remodeling contributes towards an immune-suppressive phenotype in glioblastoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is one of the most aggressive tumors. Numerous studies in the field of immunotherapy have focused their efforts on identifying various pathways linked with tumor-induced immunosuppression. Recent research has demonstrated that metabolic reprogramming in a tumor can contribute towards immune tolerance. To begin to understand the interface between metabolic remodeling and the immune-suppressive state in GBM, we performed a focused, integrative analysis coupling metabolomics with gene-expression profiling in patient-derived GBM (n = 80) and compared them to low-grade astrocytoma (LGA; n = 28). Metabolic intermediates of tryptophan, arginine, prostaglandin, and adenosine emerged as immuno-metabolic nodes in GBM specific to the mesenchymal and classical molecular subtypes of GBM. Integrative analyses emphasized the importance of downstream metabolism of several of these metabolic pathways in GBM. Using CIBERSORT to analyze immune components from the transcriptional profiles of individual tumors, we demonstrated that tryptophan and adenosine metabolism resulted in an accumulation of Tregs and M2 macrophages, respectively, and was recapitulated in mouse models. Furthermore, we extended these findings to preclinical models to determine their potential utility in defining the biologic and/or immunologic consequences of the identified metabolic programs. Collectively, through integrative analysis, we uncovered multifaceted ways by which metabolic reprogramming may contribute towards immune tolerance in GBM, providing the framework for further investigations designed to determine the specific immunologic consequence of these metabolic programs and their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1-L-MT:

1-Methyl-l-tryptophan

AD-H:

Adenosine pathway metabolites-high

AD-L:

Adenosine pathway metabolites-low

AHR:

Aryl hydrocarbon receptor

ARG-H:

Arginine pathway metabolites-high

ARG-L:

Arginine pathway metabolites-low

ARG2:

Arginase 2

ASL:

Argininosuccinate lyase

CBR:

Carbonyl reductase

CIBERSORT:

Cell-type identification by estimating relative subsets of RNA transcripts

CKMT1:

Creatine kinase, mitochondrial 1A

COX:

Cyclooxygenase

GBM:

Glioblastoma

GSCs:

Glioma stem cells

IDH1:

Isocitrate dehydrogenase 1

IL2-Rα:

Interleukin 2 receptor-subunit alpha

KEGG:

Kyoto encyclopedia of genes and genomes

KMO:

3-Mono-oxygenase

KYAT:

Kynurenine aminotransferase

KYNU:

Kynureninase

LGA:

Low-grade astrocytoma

MGMT:

O6-methylguanine–DNA methyltransferase

MSP:

Methylation-specific PCR

NAD:

Nicotinamide adenine dinucleotide

NOS1:

Nitric oxide synthase 1

PG-H:

Prostaglandin pathway metabolites-high

PG-L:

Prostaglandin pathway metabolites-low

PGE2:

Prostaglandin E2

PGF2A:

Prostaglandin F2 alpha

PGG2:

Prostaglandin G2

PGH2:

Prostaglandin H2

PLS:

Partial least squares

PTGES:

Prostaglandin E synthase

PTGIS:

Prostaglandin I synthase

PTGS:

Prostaglandin-endoperoxide synthase

QPRT:

Quinolinate phosphoribosyltransferase

TCGA:

The cancer genome atlas

TDO:

Tryptophan 2,3-dioxygenase

TRP-H:

Tryptophan pathway metaboliteshigh

TRP-L:

Tryptophan pathway metaboliteslow

VIP:

Variable importance in projection

References

  1. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol 19:v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  2. Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43:435–449. https://doi.org/10.1016/j.immuni.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34. https://doi.org/10.1056/NEJMoa1504030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reardon DA, Omuro A, Brandes AA et al (2017) OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro-Oncology 19:iii21. https://doi.org/10.1093/neuonc/nox036.071

    Article  PubMed Central  Google Scholar 

  6. Buck MD, Sowell RT, Kaech SM, Pearce EL (2017) Metabolic instruction of immunity. Cell 169:570–586. https://doi.org/10.1016/j.cell.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kesarwani P, Kant S, Prabhu A, Chinnaiyan P (2017) The interplay between metabolic remodeling and immune regulation in glioblastoma. Neuro Oncol 19:1308–1315. https://doi.org/10.1093/neuonc/nox079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kesarwani P, Prabhu A, Kant S, Kumar P, Graham SF, Buelow KL, Wilson GD, Miller CR, Chinnaiyan P (2018) Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clin Cancer Res 24:3632–3643. https://doi.org/10.1158/1078-0432.CCR-18-0041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, Tobias AL, Han Y, Lesniak MS (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18:6110–6121. https://doi.org/10.1158/1078-0432.CCR-12-2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rath M, Muller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532. https://doi.org/10.3389/fimmu.2014.00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188:21–28. https://doi.org/10.4049/jimmunol.1101029

    Article  CAS  PubMed  Google Scholar 

  12. Wang D, DuBois RN (2016) The role of prostaglandin E(2) in tumor-associated immunosuppression. Trends Mol Med 22:1–3. https://doi.org/10.1016/j.molmed.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  13. Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265. https://doi.org/10.1084/jem.20062512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chinnaiyan P, Kensicki E, Bloom G et al (2012) The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res 72:5878–5888. https://doi.org/10.1158/0008-5472.CAN-12-1572-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667. https://doi.org/10.1021/ac901536h

    Article  CAS  PubMed  Google Scholar 

  16. Prabhu AH, Kant S, Kesarwani P, Ahmed K, Forsyth P, Nakano I, Chinnaiyan P (2018) Integrative cross-platform analyses identify enhanced heterotrophy as a metabolic hallmark in glioblastoma. Neuro Oncol. https://doi.org/10.1093/neuonc/noy185

    Article  PubMed Central  Google Scholar 

  17. Prabhu A, Sarcar B, Kahali S, Yuan Z, Johnson JJ, Adam KP, Kensicki E, Chinnaiyan P (2014) Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth. Cancer Res 74:787–796. https://doi.org/10.1158/0008-5472.CAN-13-1423

    Article  CAS  PubMed  Google Scholar 

  18. Mao P, Joshi K, Li J et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA 110:8644–8649. https://doi.org/10.1073/pnas.1221478110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vitucci M, Karpinich NO, Bash RE et al (2013) Cooperativity between MAPK and PI3 K signaling activation is required for glioblastoma pathogenesis. Neuro Oncol 15:1317–1329. https://doi.org/10.1093/neuonc/not084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381. https://doi.org/10.1182/blood-2005-03-0979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grant RS, Naif H, Thuruthyil SJ, Nasr N, Littlejohn T, Takikawa O, Kapoor V (2000) Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent. J Virol 74:4110–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munn DH, Sharma MD, Hou D et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290. https://doi.org/10.1172/JCI21583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  CAS  PubMed  Google Scholar 

  25. van Baren N, Van den Eynde BJ (2015) Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol 6:34. https://doi.org/10.3389/fimmu.2015.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Opitz CA, Litzenburger UM, Sahm F et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203. https://doi.org/10.1038/nature10491

    Article  CAS  PubMed  Google Scholar 

  27. Hubbard TD, Murray IA, Bisson WH, Lahoti TS, Gowda K, Amin SG, Patterson AD, Perdew GH (2015) Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci Rep 5:12689. https://doi.org/10.1038/srep12689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744. https://doi.org/10.1038/nature08617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  30. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prabhu A, Sarcar B, Miller CR, Kim SH, Nakano I, Forsyth P, Chinnaiyan P (2015) Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro Oncol 17:1220–1230. https://doi.org/10.1093/neuonc/nou369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320(Pt 2):595–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sahm F, Oezen I, Opitz CA et al (2013) The endogenous tryptophan metabolite and NAD + precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 73:3225–3234. https://doi.org/10.1158/0008-5472.CAN-12-3831

    Article  CAS  PubMed  Google Scholar 

  34. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920. https://doi.org/10.1038/414916a

    Article  CAS  PubMed  Google Scholar 

  35. Thiel M, Caldwell CC, Sitkovsky MV (2003) The critical role of adenosine A2A receptors in downregulation of inflammation and immunity in the pathogenesis of infectious diseases. Microbes Infect 5:515–526

    Article  CAS  PubMed  Google Scholar 

  36. de Lourdes Mora-Garcia M, Garcia-Rocha R, Morales-Ramirez O et al (2016) Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions. J Transl Med 14:302. https://doi.org/10.1186/s12967-016-1057-8

    Article  CAS  Google Scholar 

  37. Leone RD, Lo YC, Powell JD (2015) A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J 13:265–272. https://doi.org/10.1016/j.csbj.2015.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AG, Queiroz RH, Covas DT, Zago MA, Panepucci RA (2011) Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res 7:66–74. https://doi.org/10.1016/j.scr.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  39. Xu S, Shao QQ, Sun JT et al (2013) Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol 15:1160–1172. https://doi.org/10.1093/neuonc/not067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prabhu A, Kesarwani P, Kant S, Graham SF, Chinnaiyan P (2017) Histologically defined intratumoral sequencing uncovers evolutionary cues into conserved molecular events driving gliomagenesis. Neuro Oncol 19:1599–1606. https://doi.org/10.1093/neuonc/nox100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) (R21NS090087), American Cancer Society (RSG-11-029-01), Bankhead-Coley Cancer Research Program and Cancer Research Seed Grant Awards from Beaumont Health to Prakash Chinnaiyan.

Author information

Authors and Affiliations

Authors

Contributions

Study design: PK and PC; experiments: PK, AP, and SK; data analysis: PK and PC; reagents: PC; and manuscript preparation: PK and PC.

Corresponding author

Correspondence to Prakash Chinnaiyan.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

GBM/glioma tissue samples were obtained from the Moffitt Cancer Center Tissue Core Facility. Institutional Review Board/Human Subjects approval (MCC16197) was obtained for this retrospective study from the ethics committee of the Moffitt Cancer Center. All animal studies were carried out under protocols approved by the IACUC (AL-16-09 and AL-18-10) at William Beaumont Research Institute.

Informed consent

Patients gave written informed consent for the use of their specimens and clinical data for research and publication prior to surgical resection or following diagnosis under the Total Cancer Care Tissue Repository program at the Moffitt Cancer Center.

Animal source

C57BL/6 (H-2b, CD45.2) and athymic nu/nu (NU-Foxn1nu) mice were purchased from Charles River Laboratories (Wilmington, MA).

Cell line authentication

Human GBM cell lines U87, U251, and T98G were purchased from ATCC and authenticated by STR analysis at The University of Arizona Genetics Core. MES83, MES326, PN19, and PN84 were generated, obtained, and authenticated by Dr. Ichiro Nakano’s lab at Ohio State University. Murine TRP cell lines were generated, obtained, and authenticated by Dr. C. Ryan Miller’s lab at The University of North Carolina School of Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesarwani, P., Prabhu, A., Kant, S. et al. Metabolic remodeling contributes towards an immune-suppressive phenotype in glioblastoma. Cancer Immunol Immunother 68, 1107–1120 (2019). https://doi.org/10.1007/s00262-019-02347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02347-3

Keywords

Navigation