Skip to main content

Advertisement

Log in

Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked?

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AKT:

     Protein kinase B

BCRP:

   Breast cancer resistance protein

CSC:

     Cancer stem cells

CaP:

      Prostate cancer

DVL:

    Dishevelled

EGFR:

  Epidermal growth factor receptor

ESC:

     Epithelial stem cells

EMT:

    Epithelial-mesenchymal transition

FOXC1:

Forkhead box c1

FZ:

        Frizzled

HIF:

      Hypoxia-induced factor

IL:

        Interleukin

JAK:

    Janus kinase

KLF4:

   Krüppel-like factor

KRAS:

  Kirsten rat sarcoma

MRP1:

  Multidrug resistance protein 1

OCT4:

   Octamer-binding transcription factor 4

P-gp:

     P-glycoprotein

PI3K:

    PhosphatidylInositol 3-kinase

ROS:

    Reactive oxygen species

STAT:

   Signal transducer and activator of transcription

SMO:

    Smoothened

SOX:

    SRY-related HMG-box

TGF:

    Tumor growth factor

TKI:

     Tyrosine kinase inhibitor

ZEB:

     Zinc finger transcription factor

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  2. Vineis, P., Schatzkin, A., & Potter, J. D. (2010). Models of carcinogenesis: An overview. Carcinogenesis, 31(10), 1703–1709. https://doi.org/10.1093/carcin/bgq087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  5. Shen, S., & Clairambault, J. (2020). Cell plasticity in cancer cell populations. F1000Research, 9, F1000 Faculty Rev-635. https://doi.org/10.12688/f1000research.24803.1

  6. Ferrao, P. T., Behren, A., Anderson, R. L., & Thompson, E. W. (2015). Editorial: Cellular and phenotypic plasticity in cancer. Frontiers in Oncology, 5, 171. https://doi.org/10.3389/fonc.2015.00171

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herreros-Villanueva, M., Bujanda, L., Billadeau, D. D., & Zhang, J. S. (2014). Embryonic stem cell factors and pancreatic cancer. World Journal of Gastroenterology, 20(9), 2247–2254. https://doi.org/10.3748/wjg.v20.i9.2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., Lao, K., & Surani, M. A. (2010). Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell, 6(5), 468–478. https://doi.org/10.1016/j.stem.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fatma, H., & Siddique, H. R. (2021). Pluripotency inducing Yamanaka factors: Role in stemness and chemoresistance of liver cancer. Expert Review of Anticancer Therapy, 21(8), 853–864. https://doi.org/10.1080/14737140.2021.1915137

    Article  CAS  PubMed  Google Scholar 

  10. Hadjimichael, C., Chanoumidou, K., Papadopoulou, N., Arampatzi, P., Papamatheakis, J., & Kretsovali, A. (2015). Common stemness regulators of embryonic and cancer stem cells. World journal of stem cells, 7(9), 1150–1184. https://doi.org/10.4252/wjsc.v7.i9.1150

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fatma, H., Siddique, H. R., & Maurya, S. K. (2021). The multiple faces of NANOG in cancer: A therapeutic target to chemosensitize therapy-resistant cancers. Epigenomics, 13(23), 1885–1900. https://doi.org/10.2217/epi-2021-0228

    Article  CAS  PubMed  Google Scholar 

  12. Boumahdi, S., & de Sauvage, F. J. (2020). The great escape: Tumor cell plasticity in resistance to targeted therapy. Nature reviews. Drug Design and Discovery, 19(1), 39–56. https://doi.org/10.1038/s41573-019-0044-1

    Article  CAS  Google Scholar 

  13. Jacquemin, V., Antoine, M., Dom, G., Detours, V., Maenhaut, C., & Dumont, J. E. (2022). Dynamic cancer cell heterogeneity: Diagnostic and therapeutic implications. Cancers, 14(2), 280. https://doi.org/10.3390/cancers14020280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dagogo-Jack, I., & Shaw, A. T. (2018). Tumour heterogeneity and resistance to cancer therapies. Nature reviews. Clinical Oncology, 15(2), 81–94. https://doi.org/10.1038/nrclinonc.2017.166

    Article  CAS  PubMed  Google Scholar 

  15. Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  16. Murugaesu, N., Wilson, G. A., Birkbak, N. J., Watkins, T., McGranahan, N., Kumar, S., Abbassi-Ghadi, N., Salm, M., Mitter, R., Horswell, S., Rowan, A., Phillimore, B., Biggs, J., Begum, S., Matthews, N., Hochhauser, D., Hanna, G. B., & Swanton, C. (2015). Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discovery, 5(8), 821–831. https://doi.org/10.1158/2159-8290.CD-15-0412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fanelli, G. N., Naccarato, A. G., & Scatena, C. (2020). Recent advances in cancer plasticity: Cellular mechanisms, surveillance strategies, and therapeutic optimization. Frontiers in Oncology, 10, 569. https://doi.org/10.3389/fonc.2020.00569

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature, 255(5505), 197–200. https://doi.org/10.1038/255197a0

    Article  CAS  PubMed  Google Scholar 

  19. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194(4260), 23–28. https://doi.org/10.1126/science.959840

    Article  CAS  PubMed  Google Scholar 

  20. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313. https://doi.org/10.1038/nature10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McGranahan, N., & Swanton, C. (2017). Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell, 168(4), 613–628. https://doi.org/10.1016/j.cell.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  22. Ahmed, M., & Li, L. C. (2013). Adaptation and clonal selection models of castration-resistant prostate cancer: Current perspective. International Journal of Urology : Official Journal of the Japanese Urological Association, 20(4), 362–371. https://doi.org/10.1111/iju.12005

    Article  PubMed  Google Scholar 

  23. Vaquero-Siguero, N., Schleussner, N., Volk, J., Mastel, M., Meier, J., & Jackstadt, R. (2022). Modeling colorectal cancer progression reveals niche-dependent clonal selection. Cancers, 14(17), 4260. https://doi.org/10.3390/cancers14174260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pierce, G. B., & Speers, W. C. (1988). Tumors as caricatures of the process of tissue renewal: Prospects for therapy by directing differentiation. Cancer Research, 48(8), 1996–2004.

    CAS  PubMed  Google Scholar 

  25. Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291. https://doi.org/10.1016/j.stem.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  26. Kise, K., Kinugasa-Katayama, Y., & Takakura, N. (2016). Tumor microenvironment for cancer stem cells. Advanced drug delivery reviews, 99(Pt B), 197–205. https://doi.org/10.1016/j.addr.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  27. van Niekerk, G., Davids, L. M., Hattingh, S. M., & Engelbrecht, A. M. (2017). Cancer stem cells: A product of clonal evolution? International Journal of Cancer, 140(5), 993–999. https://doi.org/10.1002/ijc.30448

    Article  CAS  PubMed  Google Scholar 

  28. Cabrera, M. C., Hollingsworth, R. E., & Hurt, E. M. (2015). Cancer stem cell plasticity and tumor hierarchy. World journal of stem cells, 7(1), 27–36. https://doi.org/10.4252/wjsc.v7.i1.27

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78. https://doi.org/10.1016/j.stem.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  30. Thankamony, A. P., Saxena, K., Murali, R., Jolly, M. K., & Nair, R. (2020). Cancer stem cell plasticity - A deadly deal. Frontiers in Molecular Biosciences, 7, 79. https://doi.org/10.3389/fmolb.2020.00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts, C. M., Cardenas, C., & Tedja, R. (2019). The Role of intra-tumoral heterogeneity and its clinical relevance in epithelial ovarian cancer recurrence and metastasis. Cancers, 11(8), 1083. https://doi.org/10.3390/cancers11081083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stanta, G., & Bonin, S. (2018). Overview on clinical relevance of intra-tumor heterogeneity. Frontiers in Medicine, 5, 85. https://doi.org/10.3389/fmed.2018.00085

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–956. https://doi.org/10.1016/j.cell.2005.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H., & Young, R. A. (2008). Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes & Development, 22(6), 746–755. https://doi.org/10.1101/gad.1642408

    Article  CAS  Google Scholar 

  35. Morris, S. A. (2016). Direct lineage reprogramming via pioneer factors; A detour through developmental gene regulatory networks. Development (Cambridge, England), 143(15), 2696–2705. https://doi.org/10.1242/dev.138263

    Article  CAS  PubMed  Google Scholar 

  36. Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., & Cui, H. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 5(1), 8. https://doi.org/10.1038/s41392-020-0110-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karamboulas, C., & Ailles, L. (2013). Developmental signaling pathways in cancer stem cells of solid tumors. Biochimica et Biophysica Acta, 1830(2), 2481–2495. https://doi.org/10.1016/j.bbagen.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  38. Smith, B. A., Balanis, N. G., Nanjundiah, A., Sheu, K. M., Tsai, B. L., Zhang, Q., Park, J. W., Thompson, M., Huang, J., Witte, O. N., & Graeber, T. G. (2018). A human adult stem cell signature marks aggressive variants across epithelial cancers. Cell reports, 24(12), 3353–3366.e5. https://doi.org/10.1016/j.celrep.2018.08.062

    Article  CAS  PubMed  Google Scholar 

  39. Sneha, S., Nagare, R. P., Manasa, P., Vasudevan, S., Shabna, A., & Ganesan, T. S. (2019). Analysis of human stem cell transcription factors. Cell Reports, 21(4), 171–180. https://doi.org/10.1089/cell.2019.0005

    Article  CAS  Google Scholar 

  40. Swain, N., Thakur, M., Pathak, J., & Swain, B. (2020). SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis. Journal of oral and maxillofacial pathology: JOMFP, 24(2), 368–373. https://doi.org/10.4103/jomfp.JOMFP_22_20

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu, A., Yu, X., & Liu, S. (2013). Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chinese Journal of Cancer, 32(9), 483–487. https://doi.org/10.5732/cjc.012.10282

    Article  PubMed  PubMed Central  Google Scholar 

  42. Islam, Z., Ali, A. M., Naik, A., Eldaw, M., Decock, J., & Kolatkar, P. R. (2021). Transcription factors: The fulcrum between cell development and carcinogenesis. Frontiers in Oncology, 11, 681377. https://doi.org/10.3389/fonc.2021.681377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He, Z., He, J., & Xie, K. (2023). KLF4 transcription factor in tumorigenesis. Cell Death & Disease, 9(1), 118. https://doi.org/10.1038/s41420-023-01416-y

    Article  Google Scholar 

  44. Qi, X. T., Li, Y. L., Zhang, Y. Q., Xu, T., Lu, B., Fang, L., Gao, J. Q., Yu, L. S., Zhu, D. F., Yang, B., He, Q. J., & Ying, M. D. (2019). KLF4 functions as an oncogene in promoting cancer stem cell-like characteristics in osteosarcoma cells. Acta Pharmacologica Sinica, 40(4), 546–555. https://doi.org/10.1038/s41401-018-0050-6

    Article  CAS  PubMed  Google Scholar 

  45. Ma, C., Wang, F., Han, B., Zhong, X., Si, F., Ye, J., Hsueh, E. C., Robbins, L., Kiefer, S. M., Zhang, Y., Hunborg, P., Varvares, M. A., Rauchman, M., & Peng, G. (2018). SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. Molecular Cancer, 17(1), 78. https://doi.org/10.1186/s12943-018-0824-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, F., Cui, P., Lu, Y., & Zhang, X. (2019). Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells. Stem Cell Research & Therapy, 10(1), 233. https://doi.org/10.1186/s13287-019-1360-4

    Article  CAS  Google Scholar 

  47. Gong, X., Liu, W., Wu, L., Ma, Z., Wang, Y., Yu, S., Zhang, J., Xie, H., Wei, G., Ma, F., Lu, L., & Chen, L. (2018). Transcriptional repressor GATA binding 1-mediated repression of SRY-box 2 expression suppresses cancer stem cell functions and tumor initiation. The Journal of Biological Chemistry, 293(48), 18646–18654. https://doi.org/10.1074/jbc.RA118.003983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Safa, A. R., Saadatzadeh, M. R., Cohen-Gadol, A. A., Pollok, K. E., & Bijangi-Vishehsaraei, K. (2015). Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes & diseases, 2(2), 152–163. https://doi.org/10.1016/j.gendis.2015.02.001

    Article  Google Scholar 

  49. Praharaj, P. P., Panigrahi, D. P., Bhol, C. S., Patra, S., Mishra, S. R., Mahapatra, K. K., Behera, B. P., Singh, A., Patil, S., & Bhutia, S. K. (2021). Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: A potential target for anti-CSC cancer therapy. Cancer Letters, 498, 217–228. https://doi.org/10.1016/j.canlet.2020.10.036

    Article  CAS  PubMed  Google Scholar 

  50. Patil, K., Khan, F. B., Akhtar, S., Ahmad, A., & Uddin, S. (2021). The plasticity of pancreatic cancer stem cells: Implications in therapeutic resistance. Cancer Metastasis Reviews, 40(3), 691–720. https://doi.org/10.1007/s10555-021-09979-x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and cancer stem cells. Cell Communication and Signaling: CCS, 19(1), 19. https://doi.org/10.1186/s12964-020-00627-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paul, R., Dorsey, J. F., & Fan, Y. (2022). Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. Pharmacology & Therapeutics, 231, 107985. https://doi.org/10.1016/j.pharmthera.2021.107985

    Article  CAS  Google Scholar 

  53. Lu, Y., Zhu, Y., Deng, S., Chen, Y., Li, W., Sun, J., & Xu, X. (2021). Targeting the sonic hedgehog pathway to suppress the expression of the cancer stem cell (CSC)-related transcription factors and CSC-driven thyroid tumor growth. Cancers, 13(3), 418. https://doi.org/10.3390/cancers13030418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fendler, A., Bauer, D., Busch, J., Jung, K., Wulf-Goldenberg, A., Kunz, S., Song, K., Myszczyszyn, A., Elezkurtaj, S., Erguen, B., Jung, S., Chen, W., & Birchmeier, W. (2020). Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nature Communications, 11(1), 929. https://doi.org/10.1038/s41467-020-14700-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aparicio, L. A., Blanco, M., Castosa, R., Concha, Á., Valladares, M., Calvo, L., & Figueroa, A. (2015). Clinical implications of epithelial cell plasticity in cancer progression. Cancer Letters, 366(1), 1–10. https://doi.org/10.1016/j.canlet.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  56. Kumar, V. E., Nambiar, R., De Souza, C., Nguyen, A., Chien, J., & Lam, K. S. (2022). Targeting epigenetic modifiers of tumor plasticity and cancer stem cell behavior. Cells, 11(9), 1403. https://doi.org/10.3390/cells1109140357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. da Silva-Diz, V., Lorenzo-Sanz, L., Bernat-Peguera, A., Lopez-Cerda, M., & Muñoz, P. (2018). Cancer cell plasticity: Impact on tumor progression and therapy response. Seminars in Cancer Biology, 53, 48–58. https://doi.org/10.1016/j.semcancer.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  58. Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer Discovery, 9(7), 837–851. https://doi.org/10.1158/2159-8290.CD-19-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Warrier, N. M., Kelkar, N., Johnson, C. T., Govindarajan, T., Prabhu, V., & Kumar, P. (2023). Understanding cancer stem cells and plasticity: Towards better therapeutics. European Journal of Cell Biology, 102(2), 151321. https://doi.org/10.1016/j.ejcb.2023.151321

    Article  CAS  PubMed  Google Scholar 

  60. Baram, T., Rubinstein-Achiasaf, L., Ben-Yaakov, H., & Ben-Baruch, A. (2021). Inflammation-driven breast tumor cell plasticity: Stemness/EMT, therapy resistance and dormancy. Frontiers in Oncology, 10, 614468. https://doi.org/10.3389/fonc.2020.614468

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guo, H., Zeng, H., Fu, C., Huang, J., Lu, J., Hu, Y., Zhou, Y., Luo, L., Zhang, Y., Zhang, L., Chen, J., & Zeng, Q. (2021). Identification of sitogluside as a potential skin-pigmentation-reducing agent through network pharmacology. Oxidative Medicine and Cellular Longevity, 2021, 4883398. https://doi.org/10.1155/2021/4883398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ray, T., Ryusaki, T., & Ray, P. S. (2021). Therapeutically targeting cancers that overexpress FOXC1: A transcriptional driver of cell plasticity, partial EMT, and cancer metastasis. Frontiers in Oncology, 11, 721959. https://doi.org/10.3389/fonc.2021.721959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Friedmann-Morvinski, D. (2014). Glioblastoma heterogeneity and cancer cell plasticity. Critical Reviews in Oncogenesis, 19(5), 327–336. https://doi.org/10.1615/critrevoncog.2014011777

    Article  PubMed  Google Scholar 

  64. Lee, C. C., Lin, J. C., Hwang, W. L., Kuo, Y. J., Chen, H. K., Tai, S. K., Lin, C. C., & Yang, M. H. (2018). Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization. Nature Communications, 9(1), 3763. https://doi.org/10.1038/s41467-018-06268-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaffer, C. L., San Juan, B. P., Lim, E., & Weinberg, R. A. (2016). EMT, cell plasticity and metastasis. Cancer Metastasis Reviews, 35(4), 645–654. https://doi.org/10.1007/s10555-016-9648-7

    Article  PubMed  Google Scholar 

  66. Savagner, P. (2015). Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Current Topics in Developmental Biology, 112, 273–300. https://doi.org/10.1016/bs.ctdb.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  67. Xu, Y., Lee, D. K., Feng, Z., Xu, Y., Bu, W., Li, Y., Liao, L., & Xu, J. (2017). Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 114(43), 11494–11499. https://doi.org/10.1073/pnas.1618091114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krebs, A. M., Mitschke, J., Lasierra Losada, M., Schmalhofer, O., Boerries, M., Busch, H., Boettcher, M., Mougiakakos, D., Reichardt, W., Bronsert, P., Brunton, V. G., Pilarsky, C., Winkler, T. H., Brabletz, S., Stemmler, M. P., & Brabletz, T. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529. https://doi.org/10.1038/ncb3513

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, W., Ye, X. L., Xu, J., Cao, M. G., Fang, Z. Y., Li, L. Y., Guan, G. H., Liu, Q., Qian, Y. H., & Xie, D. (2017). The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Science Signaling, 10(483), eaak9557. https://doi.org/10.1126/scisignal.aak9557

    Article  CAS  PubMed  Google Scholar 

  70. Fan, C., Wang, Q., Kuipers, T. B., Cats, D., Iyengar, P. V., Hagenaars, S. C., Mesker, W. E., Devilee, P., Tollenaar, R. A. E. M., Mei, H., & Ten Dijke, P. (2023). LncRNA LITATS1 suppresses TGF-β-induced EMT and cancer cell plasticity by potentiating TβRI degradation. The EMBO journal, 42(10), e112806. https://doi.org/10.15252/embj.2022112806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lüönd, F., Tiede, S., & Christofori, G. (2021). Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer, 125(2), 164–175. https://doi.org/10.1038/s41416-021-01328-7

    Article  PubMed  PubMed Central  Google Scholar 

  72. Singh, S. K., Chen, N. M., Hessmann, E., Siveke, J., Lahmann, M., Singh, G., Voelker, N., Vogt, S., Esposito, I., Schmidt, A., Brendel, C., Stiewe, T., Gaedcke, J., Mernberger, M., Crawford, H. C., Bamlet, W. R., Zhang, J. S., Li, X. K., Smyrk, T. C., et al. (2015). Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO journal, 34(4), 517–530. https://doi.org/10.15252/embj.201489574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flavahan, W. A., Gaskell, E., & Bernstein, B. E. (2017). Epigenetic plasticity and the hallmarks of cancer. Science, 357(6348), eaal2380. https://doi.org/10.1126/science.aal2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burdziak, C., Alonso-Curbelo, D., Walle, T., Reyes, J., Barriga, F. M., Haviv, D., Xie, Y., Zhao, Z., Zhao, C. J., Chen, H. A., Chaudhary, O., Masilionis, I., Choo, Z. N., Gao, V., Luan, W., Wuest, A., Ho, Y. J., Wei, Y., Quail, D. F., et al. (2023). Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science, 380(6645), eadd5327. https://doi.org/10.1126/science.add5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bedi, U., Mishra, V. K., Wasilewski, D., Scheel, C., & Johnsen, S. A. (2014). Epigenetic plasticity: a central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget, 5(8), 2016–2029. https://doi.org/10.18632/oncotarget.1875

    Article  PubMed  PubMed Central  Google Scholar 

  76. Anatskaya, O. V., & Vinogradov, A. E. (2022). Polyploidy and Myc proto-oncogenes promote stress adaptation via epigenetic plasticity and gene regulatory network rewiring. International Journal of Molecular Sciences, 23(17), 9691. https://doi.org/10.3390/ijms23179691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Smedt, E., Lui, H., Maes, K., De Veirman, K., Menu, E., Vanderkerken, K., & De Bruyne, E. (2018). The epigenome in multiple myeloma: Impact on tumor cell plasticity and drug response. Frontiers in Oncology, 8, 566. https://doi.org/10.3389/fonc.2018.00566

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tam, W. L., & Weinberg, R. A. (2013). The epigenetics of epithelial-mesenchymal plasticity in cancer. Nature Medicine, 19(11), 1438–1449. https://doi.org/10.1038/nm.3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. He, R., Xhabija, B., Gopi, L. K., Kurup, J. T., Xu, Z., Liu, Z., & Kidder, B. L. (2022). H3K4 demethylase KDM5B regulates cancer cell identity and epigenetic plasticity. Oncogene, 41(21), 2958–2972. https://doi.org/10.1038/s41388-022-02311-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yao, J., Chen, J., Li, L. Y., & Wu, M. (2020). Epigenetic plasticity of enhancers in cancer. Transcription, 11(1), 26–36. https://doi.org/10.1080/21541264.2020.1713682

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fagnocchi, L., Poli, V., & Zippo, A. (2018). Enhancer reprogramming in tumor progression: A new route towards cancer cell plasticity. Cellular and Molecular Life Sciences: CMLS, 75(14), 2537–2555. https://doi.org/10.1007/s00018-018-2820-1

    Article  CAS  PubMed  Google Scholar 

  82. Huang, T., Song, X., Xu, D., Tiek, D., Goenka, A., Wu, B., Sastry, N., Hu, B., & Cheng, S. Y. (2020). Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 10(19), 8721–8743. https://doi.org/10.7150/thno.41648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, J., Liu, K., Song, D., Ding, M., Wang, J., Jin, Q., & Ni, J. (2016). Krüppel-like factor 4 promotes high-mobility group box 1-induced chemotherapy resistance in osteosarcoma cells. Cancer Science, 107(3), 242–249. https://doi.org/10.1111/cas.12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang, C. P., Tsai, M. F., Chang, T. H., et al. (2013). ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Letters, 328(1), 144–151. https://doi.org/10.1016/j.canlet.2012.08.021

    Article  CAS  PubMed  Google Scholar 

  85. Shlush, L. I., Mitchell, A., Heisler, L., Abelson, S., Ng, S. W. K., Trotman-Grant, A., Medeiros, J. J. F., Rao-Bhatia, A., Jaciw-Zurakowsky, I., Marke, R., McLeod, J. L., Doedens, M., Bader, G., Voisin, V., Xu, C., McPherson, J. D., Hudson, T. J., Wang, J. C. Y., Minden, M. D., et al. (2017). Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 547(7661), 104–108. https://doi.org/10.1038/nature22993

    Article  CAS  PubMed  Google Scholar 

  86. Steinbichler, T. B., Dudás, J., Skvortsov, S., Ganswindt, U., Riechelmann, H., & Skvortsova, I. I. (2018). Therapy resistance mediated by cancer stem cells. Seminars in Cancer Biology, 53, 156–167. https://doi.org/10.1016/j.semcancer.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  87. Cojoc, M., Mäbert, K., Muders, M. H., & Dubrovska, A. (2015). A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Seminars in Cancer Biology, 31, 16–27. https://doi.org/10.1016/j.semcancer.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  88. Zhou, H. M., Zhang, J. G., Zhang, X., & Li, Q. (2021). Targeting cancer stem cells for reversing therapy resistance: Mechanism, signaling, and prospective agents. Signal Transduction and Targeted Therapy, 6(1), 62. https://doi.org/10.1038/s41392-020-00430-1

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mohiuddin, I. S., Wei, S. J., & Kang, M. H. (2020). Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochimica et biophysica acta. Molecular basis of disease, 1866(4), 165432. https://doi.org/10.1016/j.bbadis.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  90. Liau, B. B., Sievers, C., Donohue, L. K., Gillespie, S. M., Flavahan, W. A., Miller, T. E., Venteicher, A. S., Hebert, C. H., Carey, C. D., Rodig, S. J., Shareef, S. J., Najm, F. J., van Galen, P., Wakimoto, H., Cahill, D. P., Rich, J. N., Aster, J. C., Suvà, M. L., Patel, A. P., et al. (2017). Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell stem cell, 20(2), 233–246.e7. https://doi.org/10.1016/j.stem.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  91. Rabé, M., Dumont, S., Álvarez-Arenas, A., Janati, H., Belmonte-Beitia, J., Calvo, G. F., Thibault-Carpentier, C., Séry, Q., Chauvin, C., Joalland, N., Briand, F., Blandin, S., Scotet, E., Pecqueur, C., Clairambault, J., Oliver, L., Perez-Garcia, V., Nadaradjane, A., Cartron, P. F., et al. (2020). Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death & Disease, 11(1), 19. https://doi.org/10.1038/s41419-019-2200-2

    Article  CAS  Google Scholar 

  92. Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., McDermott, U., Azizian, N., Zou, L., Fischbach, M. A., Wong, K. K., Brandstetter, K., Wittner, B., Ramaswamy, S., Classon, M., & Settleman, J. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69–80. https://doi.org/10.1016/j.cell.2010.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shen, S., Faouzi, S., Bastide, A., Martineau, S., Malka-Mahieu, H., Fu, Y., Sun, X., Mateus, C., Routier, E., Roy, S., Desaubry, L., André, F., Eggermont, A., David, A., Scoazec, J. Y., Vagner, S., & Robert, C. (2019). An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nature Communications, 10(1), 5713. https://doi.org/10.1038/s41467-019-13360-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sánchez-Danés, A., Larsimont, J. C., Liagre, M., Muñoz-Couselo, E., Lapouge, G., Brisebarre, A., Dubois, C., Suppa, M., Sukumaran, V., Del Marmol, V., Tabernero, J., & Blanpain, C. (2018). A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature, 562(7727), 434–438. https://doi.org/10.1038/s41586-018-0603-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Angelis, M. L., Francescangeli, F., La Torre, F., & Zeuner, A. (2019). Stem cell plasticity and dormancy in the development of cancer therapy resistance. Frontiers in Oncology, 9, 626. https://doi.org/10.3389/fonc.2019.00626

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sharma, N., Bhushan, A., He, J., Kaushal, G., & Bhardwaj, V. (2020). Metabolic plasticity imparts erlotinib-resistance in pancreatic cancer by upregulating glucose-6-phosphate dehydrogenase. Cancer & metabolism, 8, 19. https://doi.org/10.1186/s40170-020-00226-5

    Article  Google Scholar 

  97. Lorenzo-Sanz, L., & Muñoz, P. (2019). Tumor-infiltrating immunosuppressive cells in cancer-cell plasticity, tumor progression and therapy response. Cancer microenvironment : official journal of the International Cancer Microenvironment Society, 12(2-3), 119–132. https://doi.org/10.1007/s12307-019-00232-2

    Article  CAS  PubMed  Google Scholar 

  98. Wang, J. Y., Ma, J., Lin, Y. N., Wang, J., Shen, H., Gui, F. M., Han, C., Li, Q. H., Song, Z., & Wang, X. J. (2017). Zhonghua xue ye xue za zhi. Zhonghua Xueyexue Zazhi, 38(3), 192–197. https://doi.org/10.3760/cma.j.issn.0253-2727.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  99. Tanabe, S., Quader, S., Cabral, H., & Ono, R. (2020). Interplay of EMT and CSC in cancer and the potential therapeutic strategies. Frontiers in Pharmacology, 11, 904. https://doi.org/10.3389/fphar.2020.00904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jeng, K. S., Chang, C. F., & Lin, S. S. (2020). Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. International Journal of Molecular Sciences, 21(3), 758. https://doi.org/10.3390/ijms21030758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gong, L., Yan, Q., Zhang, Y., Fang, X., Liu, B., & Guan, X. (2019). Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer communications, 39(1), 48. https://doi.org/10.1186/s40880-019-0393-5

    Article  PubMed  PubMed Central  Google Scholar 

  102. Srivastava, D., & DeWitt, N. (2016). In vivo cellular reprogramming: The next generation. Cell, 166(6), 1386–1396. https://doi.org/10.1016/j.cell.2016.08.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lin, S. L., Chang, D. C., Chang-Lin, S., Lin, C. H., Wu, D. T., Chen, D. T., & Ying, S. Y. (2008). Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 14(10), 2115–2124. https://doi.org/10.1261/rna.1162708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Aligarh Muslim University, India, for providing the necessary facilities. HF expresses her sincere gratitude for the fellowship to UGC (F.82-27/2019(SA-III)), India. HRS is grateful to The UGC (Grant no.F.30-377/2017(BSR)) and DST-SERB (Grant no. EMR/2017/001758), New Delhi, India, for providing financial help.

Author information

Authors and Affiliations

Authors

Contributions

Collection of literature and writing the manuscript: H. Fatma and H.R. Siddique.

Concept and Supervision: H.R. Siddique.

Corresponding author

Correspondence to Hifzur R. Siddique.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatma, H., Siddique, H.R. Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked?. Cancer Metastasis Rev 43, 423–440 (2024). https://doi.org/10.1007/s10555-023-10144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10144-9

Keywords

Navigation