Skip to main content

Advertisement

Log in

Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2-ME2:

2-Methoxyestradiol

AMPK:

AMP-activated protein kinase

ARNT:

Aryl hydrocarbon nuclear translocator

Bcl-2:

B-cell lymphoma 2

Bcl-xL:

B-cell lymphoma-extra-large

BDNF:

Brain-derived neurotrophic factor

CaMKIIγ:

Ca2+/calmodulin-dependent protein kinase II-γ

CLDN:

Claudin

COX-2:

Cyclooxygenase-2

CXCL:

C-X-C chemokine receptor ligand

Cyt c:

Cytochrome c

DHTMF:

5,3′-Dihydroxy-6,7,4′-trimethoxyflavanone

DNMTs:

DNA methyltransferases

EGCG:

Epigallocatechin-3 gallate

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

EPO:

Erythropoietin

ER-α:

Estrogen receptor-α

ERK:

Extracellular signal-regulated protein kinase

FGFR3:

Fibroblast growth factor receptor 3

FIH:

Factor inhibiting HIF

FUT4:

Fucosyltransferase 4

G6PD:

Glucose-6-phosphate dehydrogenase

Gli1:

Glioma-associated oncogene homolog 1

GLUT:

Glucose transporter

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GSK-3β:

Glycogen synthase kinase-3β

HDACs:

Histone deacetylases

HGF:

Hepatocyte growth factor

HIF-1α:

Hypoxia-inducible factor-1α

HK2:

Hexokinase 2

HL:

Hippel-Lindau

IGF-2:

Insulin-growth factor-2

IκB:

Inhibitor of nuclear factor-κB

IKKβ:

IκB kinase β

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

JAK:

Janus kinase

JNK:

C-Jun NH2-terminal kinase

LDH:

Lactate dehydrogenase

LDHA:

Lactate dehydrogenase A

LFCS:

Low-molecular-weight fucosylated chondroitin sulfate

LMWF:

Low-molecular-weight fucoidan

MAPKs:

Mitogen-activated protein kinases

Mcl-1:

Myeloid cell leukemia-1

MDA:

Malondialdehyde

MMPs:

Matrix metalloproteinases

MTA1:

Metastasis-associated protein 1

mTOR:

Mammalian target of rapamycin

NCs:

Natural compounds

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B-cell

NOS2:

Nitric oxide synthase 2

Nrf2:

Nuclear factor erythroid 2-related factor 2

NSCLC:

Non-small cell lung cancer

OCLN:

Occluding

P4Hs:

Prolyl-4-hydroxylases

PARP:

Poly (ADP ribose) polymerase

PCNA:

Proliferating cell nuclear antigen

PDGF:

Platelet-derived growth factor

PDK:

Pyruvate dehydrogenase kinase

PHD2:

Prolyl hydroxylase 2

PI3K:

Phosphatidylinositol 3-kinases

PK:

Pyruvate kinase

PKB:

Protein kinase B

PKC:

Protein kinase C

PLCγ1:

Phospholipase C gamma1

PPAR-γ:

Peroxisome proliferator–activated receptor-γ

PRL-3:

Phosphatase of regenerating liver-3

PSTAT3:

Phospho-STAT3

PTEN:

Phosphatase and tensin homolog

PUMA:

P53 upregulated modulator of apoptosis

Raf:

Rapidly accelerated fibrosarcoma

ROS:

Reactive oxygen species

RTKs:

Receptor tyrosine kinases

SHH:

Sonic hedgehog

STAT:

Signal transducer and activator of transcription

TERT:

Telomerase reverse transcriptase

TGF-α:

Transforming growth factor-α

TGF-β:

Transforming growth factor-β

TIMP-1:

Matrix metalloproteinases

TIMP:

Tissue inhibitor of metalloproteinase

TLR3:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

TRAIL:

TNF-related apoptosis-inducing ligand

uPA:

Urokinase plasminogen activator

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2

ZO-1:

Zona occludens1

α-SMA:

α-Smooth muscle actin

References

  1. De Mejia, E. G., & Dia, V. P. (2010). The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer and Metastasis Reviews, 29(3), 511–528.

    CAS  PubMed  Google Scholar 

  2. Ma, Z., Xiang, X., Li, S., Xie, P., Gong, Q., Goh, B.-C., et al. (2020). Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. In Seminars in Cancer Biology, 80, 379–390.

    Google Scholar 

  3. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Najafi, M., Farhood, B., & Mortezaee, K. (2019). Extracellular matrix (ECM) stiffness and degradation as cancer drivers. Journal of Cellular Biochemistry, 120(3), 2782–2790.

    CAS  PubMed  Google Scholar 

  5. Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.

    CAS  PubMed  Google Scholar 

  6. Conlon, G. A., & Murray, G. I. (2019). Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. The Journal of Pathology, 247(5), 629–640.

    PubMed  Google Scholar 

  7. Gkretsi, V., & Stylianopoulos, T. (2018). Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Frontiers in Oncology, 8, 145.

    PubMed  PubMed Central  Google Scholar 

  8. Wittekind, C., & Neid, M. (2005). Cancer invasion and metastasis. Oncology, 69(Suppl. 1), 14–16.

    PubMed  Google Scholar 

  9. Tang, M. K., Yue, P. Y., Ip, P. P., Huang, R.-L., Lai, H.-C., Cheung, A. N., et al. (2018). Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nature communications, 9(1), 1–15.

    Google Scholar 

  10. Lu, J. (2019). The Warburg metabolism fuels tumor metastasis. Cancer and Metastasis Reviews, 38(1), 157–164.

    CAS  PubMed  Google Scholar 

  11. Fakhri, S., Abbaszadeh, F., Jorjani, M., & Pourgholami, M. H. (2021). The effects of anticancer medicinal herbs on vascular endothelial growth factor based on pharmacological aspects: A review study. Nutrition and cancer, 73(1), 1–15.

    CAS  PubMed  Google Scholar 

  12. Viale, P. H. (2020). The American Cancer Society’s facts & figures: 2020 edition. Journal of the Advanced Practitioner in Oncology, 11(2), 135.

    PubMed  PubMed Central  Google Scholar 

  13. Demain, A. L., & Vaishnav, P. (2011). Natural products for cancer chemotherapy. Microbial Biotechnology, 4(6), 687–699. https://doi.org/10.1111/j.1751-7915.2010.00221.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.

    PubMed  PubMed Central  Google Scholar 

  15. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  16. Fakhri, S., Zachariah Moradi, S., DeLiberto, L. K., & Bishayee, A. (2022). Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochemical Pharmacology, 199, 114989. https://doi.org/10.1016/j.bcp.2022.114989

    Article  CAS  PubMed  Google Scholar 

  17. Catanzaro, E., Calcabrini, C., Bishayee, A., & Fimognari, C. (2019). Antitumor potential of marine and freshwater lectins. Marine Drugs, 18(1), 11. https://doi.org/10.3390/md18010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., et al. (2020). Marine cyanobacteria and microalgae metabolites-A rich source of potential anticancer drugs. Marine Drugs, 18(9), 476. https://doi.org/10.3390/md18090476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Newman, D. J., & Cragg, G. M. (2017). Current status of marine-derived compounds as warheads in anti-tumor drug candidates. Mar Drugs, 15(4), 99. https://doi.org/10.3390/md15040099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ikeda, H., & Kakeya, H. (2021). Targeting hypoxia-inducible factor 1 (HIF-1) signaling with natural products toward cancer chemotherapy. The Journal of Antibiotics, 74(10), 687–695.

    CAS  PubMed  Google Scholar 

  21. Samec, M., Liskova, A., Koklesova, L., Mersakova, S., Strnadel, J., Kajo, K., et al. (2021). Flavonoids targeting HIF-1: Implications on cancer metabolism. Cancers, 13(1), 130.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yun, B. D., Son, S. W., Choi, S. Y., Kuh, H. J., Oh, T. J., & Park, J. K. (2021). Anti-cancer activity of phytochemicals targeting hypoxia-inducible factor-1 alpha. International Journal Molecular Science, 22(18), 9819. https://doi.org/10.3390/ijms22189819

    Article  CAS  Google Scholar 

  23. Ma, Z., Wang, L. Z., Cheng, J. T., Lam, W. S. T., Ma, X., Xiang, X., et al. (2021). Targeting hypoxia-inducible factor-1-mediated metastasis for cancer therapy. Antioxidants and redox signaling, 34(18), 1484–1497.

    CAS  PubMed  Google Scholar 

  24. Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences, 92(12), 5510–5514.

    CAS  Google Scholar 

  25. Schito, L., & Semenza, G. L. (2016). Hypoxia-inducible factors: Master regulators of cancer progression. Trends in Cancer, 2(12), 758–770. https://doi.org/10.1016/j.trecan.2016.10.016

    Article  PubMed  Google Scholar 

  26. Semenza, G. L. (2007). Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discovery Today, 12(19–20), 853–859.

    CAS  PubMed  Google Scholar 

  27. Tam, S. Y., Wu, V. W., & Law, H. K. (2020). Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Frontiers in Oncology, 10, 486.

    PubMed  PubMed Central  Google Scholar 

  28. Babaei, G., Aziz, S. G. G., & Jaghi, N. Z. Z. (2021). EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomedicine and Pharmacotherapy, 133, 110909.

    CAS  PubMed  Google Scholar 

  29. Liu, Z. J., Semenza, G. L., & Zhang, H. F. (2015). Hypoxia-inducible factor 1 and breast cancer metastasis. Journal of Zhejiang University-SCIENCE B, 16(1), 32–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaufhold, S., & Bonavida, B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. Journal of Experimental and Clinical Cancer Research, 33(1), 1–19.

    Google Scholar 

  31. Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2), 69–84.

    CAS  PubMed  Google Scholar 

  32. Gajula, R. P., Chettiar, S. T., Williams, R. D., Thiyagarajan, S., Kato, Y., Aziz, K., et al. (2013). The twist box domain is required for Twist1-induced prostate cancer metastasis. Molecular Cancer Research, 11(11), 1387–1400.

    CAS  PubMed  Google Scholar 

  33. Ang, L., Zheng, L., Wang, J., Huang, J., Hu, H. G., Zou, Q., et al. (2017). Expression of and correlation between BCL6 and ZEB family members in patients with breast cancer. Experimental and Therapeutic Medicine, 14(5), 3985–3992.

    PubMed  PubMed Central  Google Scholar 

  34. Sánchez-Tilló, E., Siles, L., De Barrios, O., Cuatrecasas, M., Vaquero, E. C., Castells, A., et al. (2011). Expanding roles of ZEB factors in tumorigenesis and tumor progression. American Journal of Cancer Research, 1(7), 897.

    PubMed  PubMed Central  Google Scholar 

  35. Kim, Y.-N., Koo, K. H., Sung, J. Y., Yun, U.-J., & Kim, H. (2012). Anoikis resistance: An essential prerequisite for tumor metastasis. International Journal of Cell Biology, 2012, 1–11.

    Google Scholar 

  36. Ramundo, V., Zanirato, G., & Aldieri, E. (2021). The epithelial-to-mesenchymal transition (EMT) in the development and metastasis of malignant pleural mesothelioma. International Journal of Molecular Sciences, 22(22), 12216.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McMahon, S., Charbonneau, M., Grandmont, S., Richard, D. E., & Dubois, C. M. (2006). Transforming growth factor β1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. Journal of Biological Chemistry, 281(34), 24171–24181.

    CAS  PubMed  Google Scholar 

  38. Ling, G., Ji, Q., Ye, W., Ma, D., & Wang, Y. (2016). Epithelial-mesenchymal transition regulated by p38/MAPK signaling pathways participates in vasculogenic mimicry formation in SHG44 cells transfected with TGF-β cDNA loaded lentivirus in vitro and in vivo. International Journal of Oncology, 49(6), 2387–2398.

    CAS  PubMed  Google Scholar 

  39. Giannoni, E., Parri, M., & Chiarugi, P. (2012). EMT and oxidative stress: A bidirectional interplay affecting tumor malignancy. Antioxidants and Redox Signaling, 16(11), 1248–1263.

    CAS  PubMed  Google Scholar 

  40. Courtnay, R., Ngo, D. C., Malik, N., Ververis, K., Tortorella, S. M., & Karagiannis, T. C. (2015). Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Molecular Biology Reports, 42(4), 841–851.

    CAS  PubMed  Google Scholar 

  41. Agani, F., & Jiang, B. H. (2013). Oxygen-independent regulation of HIF-1: Novel involvement of PI3K/AKT/mTOR pathway in cancer. Current Cancer Drug Targets, 13(3), 245–251.

    CAS  PubMed  Google Scholar 

  42. Choi, Y., San Ko, Y., Park, J., Choi, Y., Kim, Y., Pyo, J.-S., et al. (2016). HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer. World Journal of Gastroenterology, 22(41), 9141.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lei, J., Ma, J., Ma, Q., Li, X., Liu, H., Xu, Q., et al. (2013). Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Molecular Cancer, 12(1), 1–11.

    Google Scholar 

  44. Lv, L., Yang, Z., Ma, T., & Xuan, Y. (2018). Gli1, a potential cancer stem cell marker, is strongly associated with prognosis in prostate cancer. International Journal of Clinical and Experimental Pathology, 11(10), 4957.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Katagiri, T., Kobayashi, M., Yoshimura, M., Morinibu, A., Itasaka, S., Hiraoka, M., et al. (2018). HIF-1 maintains a functional relationship between pancreatic cancer cells and stromal fibroblasts by upregulating expression and secretion of Sonic hedgehog. Oncotarget, 9(12), 10525–10535. https://doi.org/10.18632/oncotarget.24156

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu, H. L., Liu, D., Ding, G. R., Liao, P. F., & Zhang, J. W. (2015). Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells. Molecular Medicine Reports, 12(3), 3365–3373.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Vallée, A., Lecarpentier, Y., & Vallée, J. N. (2021). The key role of the WNT/β-catenin pathway in metabolic reprogramming in cancers under normoxic conditions. Cancers, 13(21), 5557.

    PubMed  PubMed Central  Google Scholar 

  48. Sutendra, G., Dromparis, P., Kinnaird, A., Stenson, T., Haromy, A., Parker, J., et al. (2013). Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene, 32(13), 1638–1650.

    CAS  PubMed  Google Scholar 

  49. Vallée, A., Guillevin, R., & Vallée, J. N. (2018). Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Reviews in the Neurosciences, 29(1), 71–91.

    PubMed  Google Scholar 

  50. Soni, S., & Padwad, Y. S. (2017). HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncologica, 56(4), 503–515.

    CAS  PubMed  Google Scholar 

  51. Rey, S., & Semenza, G. L. (2010). Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovascular Research, 86(2), 236–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahecha, A. M., & Wang, H. (2017). The influence of vascular endothelial growth factor-A and matrix metalloproteinase-2 and-9 in angiogenesis, metastasis, and prognosis of endometrial cancer. OncoTargets and Therapy, 10, 4617.

    PubMed  PubMed Central  Google Scholar 

  53. Akkoç, Y., Berrak, Ö., Arısan, E. D., Obakan, P., Çoker-Gürkan, A., & Palavan-Ünsal, N. (2015). Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells. Biomedicine and Pharmacotherapy, 71, 161–171.

    PubMed  Google Scholar 

  54. Almiron Bonnin, D. A., Havrda, M. C., Lee, M. C., Liu, H., Zhang, Z., Nguyen, L. N., et al. (2018). Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene, 37(8), 1107–1118. https://doi.org/10.1038/onc.2017.404

    Article  CAS  PubMed  Google Scholar 

  55. Xu, Q., Briggs, J., Park, S., Niu, G., Kortylewski, M., Zhang, S., et al. (2005). Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 24(36), 5552–5560.

    CAS  PubMed  Google Scholar 

  56. D’Ignazio, L., Batie, M., & Rocha, S. (2017). Hypoxia and inflammation in cancer, focus on HIF and NF-κB. Biomedicines, 5(2), 21.

    PubMed  PubMed Central  Google Scholar 

  57. Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer, 12(1), 1–15.

    Google Scholar 

  58. Balamurugan, K. (2016). HIF-1 at the crossroads of hypoxia, inflammation, and cancer. International Journal of Cancer, 138(5), 1058–1066.

    CAS  PubMed  Google Scholar 

  59. Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology, 5(5), 343–354.

    CAS  PubMed  Google Scholar 

  60. Cummins, E. P., Berra, E., Comerford, K. M., Ginouves, A., Fitzgerald, K. T., Seeballuck, F., et al. (2006). Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proceedings of the National Academy of Sciences, 103(48), 18154–18159.

    CAS  Google Scholar 

  61. Wang, L., Niu, Z., Wang, X., Li, Z., Liu, Y., Luo, F., et al. (2020). PHD2 exerts anti-cancer and anti-inflammatory effects in colon cancer xenografts mice via attenuating NF-κB activity. Life Sciences, 242, 117167.

    CAS  PubMed  Google Scholar 

  62. Korbecki, J., Simińska, D., Gąssowska-Dobrowolska, M., Listos, J., Gutowska, I., Chlubek, D., et al. (2021). Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. International Journal of Molecular Sciences, 22(19), 10701.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Koong, A. C., Chen, E. Y., Mivechi, N. F., Denko, N. C., Stambrook, P., & Giaccia, A. J. (1994). Hypoxic activation of nuclear factor-κB is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Research, 54(20), 5273–5279.

    CAS  PubMed  Google Scholar 

  64. Bruning, U., Fitzpatrick, S. F., Frank, T., Birtwistle, M., Taylor, C. T., & Cheong, A. (2012). NFκB and HIF display synergistic behaviour during hypoxic inflammation. Cellular and Molecular Life Sciences, 69(8), 1319–1329.

    CAS  PubMed  Google Scholar 

  65. Pires, B. R., Mencalha, A. L., Ferreira, G. M., de Souza, W. F., Morgado-Díaz, J. A., Maia, A. M., et al. (2017). NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS ONE, 12(1), e0169622.

    PubMed  PubMed Central  Google Scholar 

  66. Cheng, Z. X., Sun, B., Wang, S. J., Gao, Y., Zhang, Y. M., Zhou, H. X., et al. (2011). Nuclear factor-κb–dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE, 6(8), e23752.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Han, S., Xu, W., Wang, Z., Qi, X., Wang, Y., Ni, Y., et al. (2016). Crosstalk between the HIF-1 and Toll-like receptor/nuclear factor-κB pathways in the oral squamous cell carcinoma microenvironment. Oncotarget, 7(25), 37773.

    PubMed  PubMed Central  Google Scholar 

  68. Yu, T., Tang, B., & Sun, X. (2017). Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Medical Journal, 58(3), 489–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Welsh, S., Williams, R., Kirkpatrick, L., Paine-Murrieta, G., & Powis, G. (2004). Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α. Molecular Cancer Therapeutics, 3(3), 233–244.

    CAS  PubMed  Google Scholar 

  70. Macpherson, G. R., & Figg, W., II. (2004). Small molecule-mediated anti-cancer therapy via hypoxia inducible factor-1 blockade. Cancer Biology and Therapy, 3(6), 503–504.

    CAS  PubMed  Google Scholar 

  71. Liu, X., Chen, Z., Xu, C., Leng, X., Cao, H., Ouyang, G., et al. (2015). Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation. Nucleic Acids Research, 43(10), 5081–5098.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mabjeesh, N. J., Escuin, D., LaVallee, T. M., Pribluda, V. S., Swartz, G. M., Johnson, M. S., et al. (2003). 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell, 3(4), 363–375.

    CAS  PubMed  Google Scholar 

  73. Zhou, Q., Gustafson, D., Nallapareddy, S., Diab, S., Leong, S., Lewis, K., et al. (2011). A phase I dose-escalation, safety and pharmacokinetic study of the 2-methoxyestradiol analog ENMD-1198 administered orally to patients with advanced cancer. Investigational New Drugs, 29(2), 340–346.

    CAS  PubMed  Google Scholar 

  74. Matei, D., Schilder, J., Sutton, G., Perkins, S., Breen, T., Quon, C., et al. (2009). Activity of 2 methoxyestradiol (Panzem® NCD) in advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: A hoosier oncology group trial. Gynecologic Oncology, 115(1), 90–96.

    CAS  PubMed  Google Scholar 

  75. Harrison, M. R., Hahn, N. M., Pili, R., Oh, W. K., Hammers, H., Sweeney, C., et al. (2011). A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal® dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Investigational New Drugs, 29(6), 1465–1474.

    CAS  PubMed  Google Scholar 

  76. Bruce, J. Y., Eickhoff, J., Pili, R., Logan, T., Carducci, M., Arnott, J., et al. (2012). A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Investigational New Drugs, 30(2), 794–802.

    CAS  PubMed  Google Scholar 

  77. Sapra, P., Zhao, H., Mehlig, M., Malaby, J., Kraft, P., Longley, C., et al. (2008). Novel delivery of SN38 markedly inhibits tumor growth in xenografts, including a camptothecin-11–refractory model. Clinical Cancer Research, 14(6), 1888–1896.

    CAS  PubMed  Google Scholar 

  78. Hsiang, Y.-H., Hertzberg, R., Hecht, S., & Liu, L. (1985). Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. Journal of Biological Chemistry, 260(27), 14873–14878.

    CAS  PubMed  Google Scholar 

  79. Sapra, P., Kraft, P., Pastorino, F., Ribatti, D., Dumble, M., Mehlig, M., et al. (2011). Potent and sustained inhibition of HIF-1α and downstream genes by a polyethyleneglycol-SN38 conjugate, EZN-2208, results in anti-angiogenic effects. Angiogenesis, 14(3), 245–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Garrett, C. R., Bekaii-Saab, T. S., Ryan, T., Fisher, G. A., Clive, S., Kavan, P., et al. (2013). Randomized phase 2 study of pegylated SN-38 (EZN-2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer, 119(24), 4223–4230.

    CAS  PubMed  Google Scholar 

  81. Greenberger, L. M., Horak, I. D., Filpula, D., Sapra, P., Westergaard, M., Frydenlund, H. F., et al. (2008). A RNA antagonist of hypoxia-inducible factor-1α, EZN-2968, inhibits tumor cell growth. Molecular Cancer Therapeutics, 7(11), 3598–3608.

    CAS  PubMed  Google Scholar 

  82. Masoud, G. N., & Li, W. (2015). HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B, 5(5), 378–389.

    PubMed  PubMed Central  Google Scholar 

  83. Jeong, W., Rapisarda, A., Park, S. R., Kinders, R. J., Chen, A., Melillo, G., et al. (2014). Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors. Cancer Chemotherapy and Pharmacology, 73(2), 343–348.

    CAS  PubMed  Google Scholar 

  84. Wang, X., Du, Z., Xu, T., Wang, X. J., Li, W., Gao, J., et al. (2021). HIF-1α is a rational target for future ovarian cancer therapies. Frontiers in Oncology, 11, 5495.

    Google Scholar 

  85. Bertozzi, D., Marinello, J., Manzo, S. G., Fornari, F., Gramantieri, L., & Capranico, G. (2014). The natural inhibitor of DNA topoisomerase I, camptothecin, modulates HIF-1α activity by changing miR expression patterns in human cancer cells. Molecular Cancer Therapeutics, 13(1), 239–248.

    CAS  PubMed  Google Scholar 

  86. Rapisarda, A., Uranchimeg, B., Sordet, O., Pommier, Y., Shoemaker, R. H., & Melillo, G. (2004). Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: Mechanism and therapeutic implications. Cancer Research, 64(4), 1475–1482.

    CAS  PubMed  Google Scholar 

  87. Wigerup, C., Påhlman, S., & Bexell, D. (2016). Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacology and Therapeutics, 164, 152–169.

    CAS  PubMed  Google Scholar 

  88. Kummar, S., Raffeld, M., Juwara, L., Horneffer, Y., Strassberger, A., Allen, D., et al. (2011). Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1α in advanced solid tumors. Clinical Cancer Research, 17(15), 5123–5131.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Parmakhtiar, B., Burger, R. A., Kim, J.-H., & Fruehauf, J. P. (2019). HIF inactivation of p53 in ovarian cancer can be reversed by topotecan, restoring cisplatin and paclitaxel sensitivity. Molecular Cancer Research, 17(8), 1675–1686.

    CAS  PubMed  Google Scholar 

  90. Zhang, H., Qian, D. Z., Tan, Y. S., Lee, K., Gao, P., Ren, Y. R., et al. (2008). Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proceedings of the National Academy of Sciences, 105(50), 19579–19586.

    CAS  Google Scholar 

  91. Coltella, N., Valsecchi, R., Ponente, M., Ponzoni, M., & Bernardi, R. (2015). Synergistic leukemia eradication by combined treatment with retinoic acid and HIF inhibition by EZN-2208 (PEG-SN38) in preclinical models of PML-RARα and PLZF-RARα–driven leukemia. Clinical Cancer Research, 21(16), 3685–3694.

    CAS  PubMed  Google Scholar 

  92. Ravaud, A., Bernhard, J., Gross-Goupil, M., Digue, L., & Ferriere, J. (2010). mTOR inhibitors: Temsirolimus and everolimus in the treatment of renal cell carcinoma. Bulletin Du Cancer, 97, 45–51.

    CAS  PubMed  Google Scholar 

  93. Jiang, B. H., Jiang, G., Zheng, J. Z., Lu, Z., Hunter, T., & Vogt, P. K. (2001). Phosphatidylinositol 3-kinase signaling controls levels of hypoxia inducible factor 1. Cell Growth and Differentiation-Publication American Association for Cancer Research, 12(7), 363–370.

    CAS  Google Scholar 

  94. Bowles, D. W., & Jimeno, A. (2011). New phosphatidylinositol 3-kinase inhibitors for cancer. Expert Opinion on Investigational Drugs, 20(4), 507–518.

    CAS  PubMed  Google Scholar 

  95. Erdreich-Epstein, A., Singh, A. R., Joshi, S., Vega, F. M., Guo, P., Xu, J., et al. (2016). Association of high microvessel α(v)β(3) and low PTEN with poor outcome in stage 3 neuroblastoma: Rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget, 8(32), 52193–52210. https://doi.org/10.18632/oncotarget.13386

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu, X., Chen, S., Tu, J., Cai, W., & Xu, Q. (2016). HSP90 inhibits apoptosis and promotes growth by regulating HIF-1α abundance in hepatocellular carcinoma. International Journal of Molecular Medicine, 37(3), 825–835.

    CAS  PubMed  Google Scholar 

  97. Ronnen, E. A., Kondagunta, G. V., Ishill, N., Sweeney, S. M., DeLuca, J. K., Schwartz, L., et al. (2006). A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Investigational New Drugs, 24(6), 543–546.

    CAS  PubMed  Google Scholar 

  98. Heath, E. I., Hillman, D. W., Vaishampayan, U., Sheng, S., Sarkar, F., Harper, F., et al. (2008). A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clinical Cancer Research, 14(23), 7940–7946.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Han, J.-Y., Oh, S. H., Morgillo, F., Myers, J. N., Kim, E., Hong, W. K., et al. (2005). Hypoxia-inducible factor 1α and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer. Journal of the National Cancer Institute, 97(17), 1272–1286.

    CAS  PubMed  Google Scholar 

  100. Fang, J., Xia, C., Cao, Z., Zheng, J. Z., Reed, E., & Jiang, B.-H. (2005). Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. The FASEB Journal, 19(3), 342–353.

    CAS  PubMed  Google Scholar 

  101. Melstrom, L. G., Salabat, M. R., Ding, X.-Z., Strouch, M. J., Grippo, P. J., Mirzoeva, S., et al. (2011). Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. Journal of Surgical Research, 167(2), 173–181.

    CAS  PubMed  Google Scholar 

  102. Ueda, H., Nakajima, H., Hori, Y., Fujita, T., Nishimura, M., Goto, T., et al. (1994). FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968 I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. The Journal of Antibiotics, 47(3), 301–310.

    CAS  PubMed  Google Scholar 

  103. Lee, Y. M., Kim, S.-H., Kim, H.-S., Son, M. J., Nakajima, H., Kwon, H. J., et al. (2003). Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity. Biochemical and Biophysical Research Communications, 300(1), 241–246.

    CAS  Google Scholar 

  104. Shankar, S., Davis, R., Singh, K. P., Kurzrock, R., Ross, D. D., & Srivastava, R. K. (2009). Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice. Molecular Cancer Therapeutics, 8(6), 1596–1605.

    CAS  PubMed  Google Scholar 

  105. Hutt, D. M., Roth, D. M., Vignaud, H., Cullin, C., & Bouchecareilh, M. (2014). The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition. PLoS ONE, 9(8), e106224.

    PubMed  PubMed Central  Google Scholar 

  106. Haas, N., Quirt, I., Hotte, S., McWhirter, E., Polintan, R., Litwin, S., et al. (2014). Phase II trial of vorinostat in advanced melanoma. Investigational New Drugs, 32(3), 526–534.

    CAS  PubMed  Google Scholar 

  107. Pili, R., Liu, G., Chintala, S., Verheul, H., Rehman, S., Attwood, K., et al. (2017). Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: A multicentre, single-arm phase I/II clinical trial. British Journal of Cancer, 116(7), 874–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, K., Kang, J. E., Park, S.-K., Jin, Y., Chung, K.-S., Kim, H.-M., et al. (2010). LW6, a novel HIF-1 inhibitor, promotes proteasomal degradation of HIF-1α via upregulation of VHL in a colon cancer cell line. Biochemical Pharmacology, 80(7), 982–989.

    CAS  PubMed  Google Scholar 

  109. Lee, K., Zhang, H., Qian, D. Z., Rey, S., Liu, J. O., & Semenza, G. L. (2009). Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proceedings of the National Academy of Sciences, 106(42), 17910–17915.

    CAS  Google Scholar 

  110. Wong, C. C. L., Zhang, H., Gilkes, D. M., Chen, J., Wei, H., Chaturvedi, P., et al. (2012). Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. Journal of Molecular Medicine, 90(7), 803–815.

    CAS  PubMed  Google Scholar 

  111. Vlaminck, B., Toffoli, S., Ghislain, B., Demazy, C., Raes, M., & Michiels, C. (2007). Dual effect of echinomycin on hypoxia-inducible factor-1 activity under normoxic and hypoxic conditions. The FEBS Journal, 274(21), 5533–5542.

    CAS  PubMed  Google Scholar 

  112. Kong, D., Park, E. J., Stephen, A. G., Calvani, M., Cardellina, J. H., Monks, A., et al. (2005). Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Research, 65(19), 9047–9055.

    CAS  PubMed  Google Scholar 

  113. Lee, K., Qian, D. Z., Rey, S., Wei, H., Liu, J. O., & Semenza, G. L. (2009). Anthrlsacycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cell. Proceedings of the National Academy of Sciences, 106(7), 2353–2358.

    CAS  Google Scholar 

  114. Vergis, R., Corbishley, C. M., Norman, A. R., Bartlett, J., Jhavar, S., Borre, M., et al. (2008). Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: A retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. The Lancet Oncology, 9(4), 342–351.

    PubMed  Google Scholar 

  115. Staab, A., Loeffler, J., Said, H. M., Diehlmann, D., Katzer, A., Beyer, M., et al. (2007). Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. BMC Cancer, 7(1), 1–7.

    Google Scholar 

  116. Kung, A. L., Zabludoff, S. D., France, D. S., Freedman, S. J., Tanner, E. A., Vieira, A., et al. (2004). Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell, 6(1), 33–43.

    CAS  PubMed  Google Scholar 

  117. Richardson, P. G., Hideshima, T., & Anderson, K. C. (2003). Bortezomib (PS-341): A novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control, 10(5), 361–369.

    PubMed  Google Scholar 

  118. Befani, C. D., Vlachostergios, P. J., Hatzidaki, E., Patrikidou, A., Bonanou, S., Simos, G., et al. (2012). Bortezomib represses HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. Journal of Molecular Medicine, 90(1), 45–54.

    CAS  PubMed  Google Scholar 

  119. Santos, A. I., Carreira, B. P., Nobre, R. J., Carvalho, C. M., & Araújo, I. M. (2014). Stimulation of neural stem cell proliferation by inhibition of phosphodiesterase 5. Stem Cells International, 2014, 1–13.

    Google Scholar 

  120. Hong, B., Lui, V. W., Hui, E. P., Lu, Y., Leung, H. S., Wong, E. Y., et al. (2010). Reverse phase protein array identifies novel anti-invasion mechanisms of YC-1. Biochemical Pharmacology, 79(6), 842–852.

    CAS  PubMed  Google Scholar 

  121. Li, S. H., Shin, D. H., Chun, Y.-S., Lee, M. K., Kim, M.-S., & Park, J.-W. (2008). A novel mode of action of YC-1 in HIF inhibition: Stimulation of FIH-dependent p300 dissociation from HIF-1α. Molecular Cancer Therapeutics, 7(12), 3729–3738.

    CAS  PubMed  Google Scholar 

  122. Chun, Y.-S., Yeo, E.-J., Choi, E., Teng, C.-M., Bae, J.-M., Kim, M.-S., et al. (2001). Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochemical Pharmacology, 61(8), 947–954.

    CAS  PubMed  Google Scholar 

  123. Wu, J., Contratto, M., Shanbhogue, K. P., Manji, G. A., O’Neil, B. H., Noonan, A., et al. (2019). Evaluation of a locked nucleic acid form of antisense oligo targeting HIF-1α in advanced hepatocellular carcinoma. World Journal of Clinical Oncology, 10(3), 149.

    PubMed  PubMed Central  Google Scholar 

  124. Narita, T., Yin, S., Gelin, C. F., Moreno, C. S., Yepes, M., Nicolaou, K., et al. (2009). Identification of a novel small molecule HIF-1α translation inhibitor. Clinical Cancer Research, 15(19), 6128–6136.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Welsh, S. J., Williams, R. R., Birmingham, A., Newman, D. J., Kirkpatrick, D. L., & Powis, G. (2003). The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1α and vascular endothelial growth factor formation 1. Molecular Cancer Therapeutics, 2(3), 235–243.

    CAS  PubMed  Google Scholar 

  126. Ramanathan, R. K., Abbruzzese, J., Dragovich, T., Kirkpatrick, L., Guillen, J. M., Baker, A. F., et al. (2011). A randomized phase II study of PX-12, an inhibitor of thioredoxin in patients with advanced cancer of the pancreas following progression after a gemcitabine-containing combination. Cancer Chemotherapy and Pharmacology, 67(3), 503–509.

    CAS  PubMed  Google Scholar 

  127. Voss, M. H., Hussain, A., Vogelzang, N., Lee, J., Keam, B., Rha, S., et al. (2017). A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Annals of Oncology, 28(11), 2754–2760.

    CAS  PubMed  Google Scholar 

  128. Krasner, C. N., Campos, S. M., Young, C. L., Chadda, K. R., Lee, H., Birrer, M. J., et al. (2021). Sequential phase II clinical trials evaluating CRLX101 as monotherapy and in combination with bevacizumab in recurrent ovarian cancer. Gynecologic Oncology, 162(3), 661–666.

    CAS  PubMed  Google Scholar 

  129. Chau, N.-M., Rogers, P., Aherne, W., Carroll, V., Collins, I., McDonald, E., et al. (2005). Identification of novel small molecule inhibitors of hypoxia-inducible factor-1 that differentially block hypoxia-inducible factor-1 activity and hypoxia-inducible factor-1α induction in response to hypoxic stress and growth factors. Cancer Research, 65(11), 4918–4928.

    CAS  PubMed  Google Scholar 

  130. Moradi, S. Z., Jalili, F., Farhadian, N., Joshi, T., Wang, M., Zou, L., et al. (2020). Polyphenols and neurodegenerative diseases: Focus on neuronal regeneration. Critical Reviews in Food Science and Nutrition, 62(13), 3421–36.

    Google Scholar 

  131. Fakhri, S., Pesce, M., Patruno, A., Moradi, S. Z., Iranpanah, A., Farzaei, M. H., et al. (2020). Attenuation of Nrf2/Keap1/ARE in Alzheimer’s disease by plant secondary metabolites: A mechanistic review. Molecules, 25(21), 4926.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fakhri, S., Moradi, S. Z., Farzaei, M. H., & Bishayee, A. (2022). Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. In Seminars in Cancer Biology, 80, 276–305.

    CAS  Google Scholar 

  133. Moradi, S. Z., Momtaz, S., Bayrami, Z., Farzaei, M. H., & Abdollahi, M. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Frontiers in Bioengineering and Biotechnology, 8, 238.

    PubMed  PubMed Central  Google Scholar 

  134. Fakhri, S., Iranpanah, A., Gravandi, M. M., Moradi, S. Z., Ranjbari, M., Majnooni, M. B., et al. (2021). Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. Phytomedicine, 91, 153664.

    CAS  PubMed  Google Scholar 

  135. Karaboga Arslan, A. K., Uzunhisarcıklı, E., Yerer, M. B., & Bishayee, A. (2022). The golden spice curcumin in cancer: A perspective on finalized clinical trials during the last 10 years. Journal of Cancer Research and Therapeutics, 18(1), 19–26. https://doi.org/10.4103/jcrt.JCRT_1017_20

    Article  PubMed  Google Scholar 

  136. Li, M., Guo, T., Lin, J., Huang, X., Ke, Q., Wu, Y., et al. (2022). Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway. Journal of Ethnopharmacology, 283, 114689.

    CAS  PubMed  Google Scholar 

  137. Coker-Gurkan, A., Bulut, D., Genc, R., Arisan, E.-D., Obakan-Yerlikaya, P., & Palavan-Unsal, N. (2019). Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Molecular Biology Reports, 46(1), 355–369.

    CAS  PubMed  Google Scholar 

  138. Zhang, H. H., Zhang, Y., Cheng, Y. N., Gong, F. L., Cao, Z. Q., Yu, L. G., et al. (2018). Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Molecular Carcinogenesis, 57(1), 44–56.

    CAS  PubMed  Google Scholar 

  139. Bhattamisra, S. K., Yap, K. H., Rao, V., & Choudhury, H. (2019). Multiple biological effects of an iridoid glucoside, catalpol and its underlying molecular mechanisms. Biomolecules, 10(1), 32. https://doi.org/10.3390/biom10010032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, L., Cheng, X., Gao, Y., Zhang, C., Bao, J., Guan, H., et al. (2016). Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-β/Smad2/3 signaling pathway. Experimental Cell Research, 341(2), 157–165.

    CAS  PubMed  Google Scholar 

  141. Mukherjee, S., Mazumdar, M., Chakraborty, S., Manna, A., Saha, S., Khan, P., et al. (2014). Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Research and Therapy, 5(5), 1–19.

    CAS  Google Scholar 

  142. Aedo-Aguilera, V., Carrillo-Beltrán, D., Calaf, G. M., Muñoz, J. P., Guerrero, N., Osorio, J. C., et al. (2019). Curcumin decreases epithelial-mesenchymal transition by a Pirin-dependent mechanism in cervical cancer cells. Oncology Reports, 42(5), 2139–2148.

    CAS  PubMed  Google Scholar 

  143. Xiang, L., He, B., Liu, Q., Hu, D., Liao, W., Li, R., et al. (2020). Antitumor effects of curcumin on the proliferation, migration and apoptosis of human colorectal carcinoma HCT-116 cells. Oncology Reports, 44(5), 1997–2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sun, X. D., Liu, X. E., & Huang, D. S. (2013). Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncology Reports, 29(6), 2401–2407.

    CAS  PubMed  Google Scholar 

  145. Zhang, L., Tao, X., Fu, Q., Ge, C., Li, R., Li, Z., et al. (2019). Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncology Reports, 42(5), 1843–1855.

    PubMed  PubMed Central  Google Scholar 

  146. Liao, H. H., Wang, Z. Q., Deng, Z. P., Ren, H., & Li, X. J. (2015). Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. International Journal of Clinical and Experimental Medicine, 8(6), 8948–8957.

    PubMed  PubMed Central  Google Scholar 

  147. Fu, Z., Chen, X., Guan, S., Yan, Y., Lin, H., & Hua, Z. C. (2015). Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway. Oncotarget, 6(23), 19469.

    PubMed  PubMed Central  Google Scholar 

  148. Purkayastha, S., Berliner, A., Fernando, S. S., Ranasinghe, B., Ray, I., Tariq, H., et al. (2009). Curcumin blocks brain tumor formation. Brain Research, 1266, 130–138.

    CAS  PubMed  Google Scholar 

  149. Kundur, S., Prayag, A., Selvakumar, P., Nguyen, H., McKee, L., Cruz, C., et al. (2019). Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. Journal of Cellular Physiology, 234(7), 11103–11118.

    CAS  PubMed  Google Scholar 

  150. Chen, X., Wang, Y., Tian, J., Shao, Y., Zhu, B., Wang, J., et al. (2021). Quantitative chemical proteomics reveals resveratrol inhibition of A549 cell migration through binding multiple targets to regulate cytoskeletal remodeling and suppress EMT. Front Pharmacol, 12, 636213. https://doi.org/10.3389/fphar.2021.636213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xu, Q. H., Xiao, Y., Li, X. Q., Fan, L., Zhou, C. C., Cheng, L., et al. (2020). Resveratrol counteracts hypoxia-induced gastric cancer invasion and EMT through hedgehog pathway suppression. Anti-Cancer Agents in Medicinal Chemistry, 20(9), 1105–1114. https://doi.org/10.2174/1871520620666200402080034

    Article  CAS  PubMed  Google Scholar 

  152. Xiao, Y., Qin, T., Sun, L., Qian, W., Li, J., Duan, W., et al. (2020). Resveratrol ameliorates the malignant progression of pancreatic cancer by inhibiting hypoxia-induced pancreatic stellate cell activation. Cell Transplantation, 29, 963689720929987. https://doi.org/10.1177/0963689720929987

    Article  PubMed  Google Scholar 

  153. Qin, T., Cheng, L., Xiao, Y., Qian, W., Li, J., Wu, Z., et al. (2020). NAF-1 inhibition by resveratrol suppresses cancer stem cell-like properties and the invasion of pancreatic cancer. Frontiers in Oncology, 10, 1038. https://doi.org/10.3389/fonc.2020.01038

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yang, Z., Xie, Q., Chen, Z., Ni, H., Xia, L., Zhao, Q., et al. (2019). Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition. Experimental and Therapeutic Medicine, 17(3), 1569–1578. https://doi.org/10.3892/etm.2018.7142

    Article  CAS  PubMed  Google Scholar 

  155. Li, W., Ma, J., Ma, Q., Li, B., Han, L., Liu, J., et al. (2013). Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Current Medicinal Chemistry, 20(33), 4185–4194. https://doi.org/10.2174/09298673113209990251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, J., Chong, T., Wang, Z., Chen, H., Li, H., Cao, J., et al. (2014). A novel anti-cancer effect of resveratrol: Reversal of epithelial-mesenchymal transition in prostate cancer cells. Molecular Medicine Reports, 10(4), 1717–1724.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Gao, Q., Yuan, Y., Gan, H. Z., & Peng, Q. (2015). Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncology Letters, 9(5), 2381–2387.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kimura, Y., & Okuda, H. (2001). Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. The Journal of Nutrition, 131(6), 1844–1849. https://doi.org/10.1093/jn/131.6.1844

    Article  CAS  PubMed  Google Scholar 

  159. Wang, H., Zhang, H., Tang, L., Chen, H., Wu, C., Zhao, M., et al. (2013). Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology, 303, 139–146. https://doi.org/10.1016/j.tox.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  160. Song, Y., Chen, Y., Li, Y., Lyu, X., Cui, J., Cheng, Y., et al. (2019). Resveratrol suppresses epithelial-mesenchymal transition in GBM by regulating smad-dependent signaling. BioMed Research International, 2019, 1321973. https://doi.org/10.1155/2019/1321973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ji, Q., Han, Z. F., Zhou, L. H., Sui, H., Liu, X., Ren, J. L., et al. (2016). Resveratrol inhibits epithelial-to-mesenchymal transition and metastasis in colorectal cancer through regulating Snail/E-cadherin expression by TGF beta 1/Smads signaling pathway. Cancer Research, 76, https://doi.org/10.1158/1538-7445.Am2016-1689.

  162. Hoca, M., Becer, E., Kabadayı, H., Yücecan, S., & Vatansever, H. S. (2020). The effect of resveratrol and quercetin on epithelial-mesenchymal transition in pancreatic cancer stem cell. Nutrition and Cancer, 72(7), 1231–1242.

    CAS  PubMed  Google Scholar 

  163. Hu, W. H., Chan, G. K. L., Duan, R., Wang, H. Y., Kong, X. P., Dong, T. T. X., et al. (2019). Synergy of ginkgetin and resveratrol in suppressing VEGF-induced angiogenesis: A therapy in treating colorectal cancer. Cancers, 11(12), 1828. https://doi.org/10.3390/cancers11121828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ganapathy, S., Chen, Q., Singh, K. P., Shankar, S., & Srivastava, R. K. (2010). Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS ONE, 5(12), e15627.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Buhrmann, C., Shayan, P., Kraehe, P., Popper, B., Goel, A., & Shakibaei, M. (2015). Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochemical Pharmacology, 98(1), 51–68. https://doi.org/10.1016/j.bcp.2015.08.105

    Article  CAS  PubMed  Google Scholar 

  166. Fu, J., Shrivastava, A., Shrivastava, S. K., Srivastava, R. K., & Shankar, S. (2019). Triacetyl resveratrol upregulates miRNA-200 and suppresses the Shh pathway in pancreatic cancer: A potential therapeutic agent. International Journal of Oncology, 54(4), 1306–1316.

    CAS  PubMed  Google Scholar 

  167. Bang, T. H., Park, B. S., Kang, H. M., Kim, J. H., & Kim, I. R. (2021). Polydatin, a glycoside of resveratrol, induces apoptosis and inhibits metastasis oral squamous cell carcinoma cells in vitro. Pharmaceuticals, 14(9), 902. https://doi.org/10.3390/ph14090902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, G., Wang, Y., Zhang, Y., Wan, X., Li, J., Liu, K., et al. (2012). Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Current Molecular Medicine, 12(2), 163–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Belguise, K., Guo, S., & Sonenshein, G. E. (2007). Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor α expression reversing invasive phenotype of breast cancer cells. Cancer Research, 67(12), 5763–5770.

    CAS  PubMed  Google Scholar 

  170. Sen, T., Moulik, S., Dutta, A., Choudhury, P. R., Banerji, A., Das, S., et al. (2009). Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sciences, 84(7), 194–204. https://doi.org/10.1016/j.lfs.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  171. Mineva, N. D., Paulson, K. E., Naber, S. P., Yee, A. S., & Sonenshein, G. E. (2013). Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS ONE, 8(9), e73464–e73464. https://doi.org/10.1371/journal.pone.0073464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Aggarwal, V., Tuli, H. S., Tania, M., Srivastava, S., Ritzer, E. E., Pandey, A., et al. (2022). Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology, 80, 256–275. https://doi.org/10.1016/j.semcancer.2020.05.011

    Article  CAS  PubMed  Google Scholar 

  173. Lin, C. H., Shen, Y. A., Hung, P. H., Yu, Y. B., & Chen, Y. J. (2012). Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complementary and Alternative Medicine, 12, 201–201. https://doi.org/10.1186/1472-6882-12-201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen, P. N., Chu, S. C., Kuo, W. H., Chou, M. Y., Lin, J. K., & Hsieh, Y. S. (2011). Epigallocatechin-3 gallate inhibits invasion, epithelial−mesenchymal transition, and tumor growth in oral cancer cells. Journal of Agricultural and Food Chemistry, 59(8), 3836–3844. https://doi.org/10.1021/jf1049408

    Article  CAS  PubMed  Google Scholar 

  175. Shankar, S., Ganapathy, S., Hingorani, S. R., & Srivastava, R. K. (2008). EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in Bioscience: A Journal and Virtual Library, 13, 440–452.

    PubMed  Google Scholar 

  176. Hoffmann, J., Junker, H., Schmieder, A., Venz, S., Brandt, R., Multhoff, G., et al. (2011). EGCG downregulates IL-1RI expression and suppresses IL-1-induced tumorigenic factors in human pancreatic adenocarcinoma cells. Biochemical Pharmacology, 82(9), 1153–1162. https://doi.org/10.1016/j.bcp.2011.07.063

    Article  CAS  PubMed  Google Scholar 

  177. Hossain, M. M., Banik, N. L., & Ray, S. K. (2012). Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells. Experimental Cell Research, 318(13), 1597–1610. https://doi.org/10.1016/j.yexcr.2012.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shi, J., Liu, F., Zhang, W., Liu, X., Lin, B., & Tang, X. (2015). Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncology Reports, 33(6), 2972–2980.

    CAS  PubMed  Google Scholar 

  179. Huang, S. F., Horng, C. T., Hsieh, Y. S., Hsieh, Y. H., Chu, S. C., & Chen, P. N. (2016). Epicatechin-3-gallate reverses TGF-β1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food and Chemical Toxicology, 94, 1–10. https://doi.org/10.1016/j.fct.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  180. Liu, L. C., Tsao, T. C. Y., Hsu, S. R., Wang, H. C., Tsai, T. C., Kao, J. Y., et al. (2012). EGCG inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition via the inhibition of smad2 and Erk1/2 signaling pathways in nonsmall cell lung cancer cells. Journal of Agricultural and Food Chemistry, 60(39), 9863–9873. https://doi.org/10.1021/jf303690x

    Article  CAS  PubMed  Google Scholar 

  181. He, L., Zhang, E. Y., Shi, J. L., Li, X. Y., Zhou, K. Y., Zhang, Q. Z., et al. (2013). (-)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1 alpha. Cancer Chemotherapy and Pharmacology, 71(3), 713–725. https://doi.org/10.1007/s00280-012-2063-z

    Article  CAS  PubMed  Google Scholar 

  182. Li, X. Y., Feng, Y., Liu, J. H., Feng, X. W., Zhou, K. Y., & Tang, X. D. (2013). Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-l alpha and VEGF expression. Journal of Nutrigenetics and Nutrigenomics, 6(3), 169–178. https://doi.org/10.1159/000354402

    Article  CAS  PubMed  Google Scholar 

  183. Spinella, F., Rosano, L., Di Castro, V., Decandia, S., Albini, A., Nicotra, M. R., et al. (2006). Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Molecular Cancer Therapeutics, 5(6), 1483–1492.

    CAS  PubMed  Google Scholar 

  184. Wang, J., Man, G. C. W., Chan, T. H., Kwong, J., & Wang, C. C. (2018). A prodrug of green tea polyphenol (–)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Letters, 412, 10–20. https://doi.org/10.1016/j.canlet.2017.09.054

    Article  CAS  PubMed  Google Scholar 

  185. Zhu, B. H., Zhan, W. H., Li, Z. R., Wang, Z., He, Y. L., Peng, J. S., et al. (2007). (-)-Epigallocatechin-3-gallate inhibits growth of gastric cancer by reducing VEGF production and angiogenesis. World Journal of Gastroenterology, 13(8), 1162–1169. https://doi.org/10.3748/wjg.v13.i8.1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mirzaaghaei, S., Foroughmand, A. M., Saki, G., & Shafiei, M. (2019). Combination of epigallocatechin-3-gallate and silibinin: A novel approach for targeting both tumor and endothelial cells. ACS Omega, 4(5), 8421–8430. https://doi.org/10.1021/acsomega.9b00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Siddiqui, I. A., Malik, A., Adhami, V. M., Asim, M., Hafeez, B. B., Sarfaraz, S., et al. (2008). Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene, 27(14), 2055–2063. https://doi.org/10.1038/sj.onc.1210840

    Article  CAS  PubMed  Google Scholar 

  188. Singh, M., Bhatnagar, P., Mishra, S., Kumar, P., Shukla, Y., & Gupta, K. C. (2015). PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. International Journal of Nanomedicine, 10, 6789–6809. https://doi.org/10.2147/IJN.S79489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wei, R., Penso, N. E. C., Hackman, R. M., Wang, Y., & Mackenzie, G. G. (2019). Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial-mesenchymal transition: Enhanced efficacy when combined with gemcitabine. Nutrients, 11(8), 1856. https://doi.org/10.3390/nu11081856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Khan, F., Niaz, K., Maqbool, F., Ismail Hassan, F., Abdollahi, M., Nagulapalli Venkata, K. C., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8(9), 529.

    PubMed  PubMed Central  Google Scholar 

  191. Balakrishnan, S., Bhat, F. A., Raja Singh, P., Mukherjee, S., Elumalai, P., Das, S., et al. (2016). Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Proliferation, 49(6), 678–697. https://doi.org/10.1111/cpr.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Srinivasan, A., Thangavel, C., Liu, Y., Shoyele, S., Den, R. B., Selvakumar, P., et al. (2016). Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Molecular carcinogenesis, 55(5), 743–756. https://doi.org/10.1002/mc.22318

    Article  CAS  PubMed  Google Scholar 

  193. Jia, L., Huang, S., Yin, X., Zan, Y., Guo, Y., & Han, L. (2018). Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life sciences, 208, 123–130. https://doi.org/10.1016/j.lfs.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  194. Liu, Y., Li, C. L., Xu, Q. Q., Cheng, D., Liu, K. D., & Sun, Z. Q. (2021). Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathology - Research and Practice, 222, 153455. https://doi.org/10.1016/j.prp.2021.153455

    Article  CAS  PubMed  Google Scholar 

  195. Lan, H., Hong, W., Fan, P., Qian, D., Zhu, J., & Bai, B. (2017). Quercetin inhibits cell migration and invasion in human osteosarcoma cells. Cellular Physiology and Biochemistry, 43(2), 553–567. https://doi.org/10.1159/000480528

    Article  CAS  PubMed  Google Scholar 

  196. Kee, J. Y., Han, Y. H., Kim, D. S., Mun, J. G., Park, J., Jeong, M. Y., et al. (2016). Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine, 23(13), 1680–1690. https://doi.org/10.1016/j.phymed.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  197. Gonçalves, C. F. L., Hecht, F., Cazarin, J., Fortunato, R. S., Vaisman, M., Carvalho, D. P., d, et al. (2021). The flavonoid quercetin reduces cell migration and increases NIS and E-cadherin mRNA in the human thyroid cancer cell line BCPAP. Molecular and Cellular Endocrinology, 529, 111266. https://doi.org/10.1016/j.mce.2021.111266

    Article  CAS  PubMed  Google Scholar 

  198. Cao, H. H., Tse, A. K. W., Kwan, H. Y., Yu, H., Cheng, C. Y., Su, T., et al. (2014). Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochemical Pharmacology, 87(3), 424–434. https://doi.org/10.1016/j.bcp.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  199. Song, W., Zhao, X., Xu, J., & Zhang, H. (2017). Quercetin inhibits angiogenesis-mediated human retinoblastoma growth by targeting vascular endothelial growth factor receptor. Oncology Letters, 14(3), 3343–3348.

    PubMed  PubMed Central  Google Scholar 

  200. Bhat, F. A., Sharmila, G., Balakrishnan, S., Arunkumar, R., Elumalai, P., Suganya, S., et al. (2014). Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. The Journal of Nutritional Biochemistry, 25(11), 1132–1139. https://doi.org/10.1016/j.jnutbio.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  201. Priyadarsini, R. V., Vinothini, G., Murugan, R. S., Manikandan, P., & Nagini, S. (2011). The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutrition and Cancer, 63(2), 218–226. https://doi.org/10.1080/01635581.2011.523503

    Article  CAS  PubMed  Google Scholar 

  202. Lei, C. S., Hou, Y. C., Pai, M. H., Lin, M. T., & Yeh, S. L. (2018). Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: In vitro and in vivo studies. Journal of Nutritional Biochemistry, 51, 105–113. https://doi.org/10.1016/j.jnutbio.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  203. Lu, X., Yang, F., Chen, D., Zhao, Q., Chen, D., Ping, H., et al. (2020). Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. International Journal of Biological Sciences, 16(7), 1121–1134. https://doi.org/10.7150/ijbs.41686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chen, K. C., Hsu, W. H., Ho, J. Y., Lin, C. W., Chu, C. Y., Kandaswami, C. C., et al. (2018). Flavonoids luteolin and quercetin inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction. Journal of Food and Drug Analysis, 26(3), 1180–1191. https://doi.org/10.1016/j.jfda.2018.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Fan, J. J., Hsu, W. H., Lee, K. H., Chen, K. C., Lin, C. W., Lee, Y. A., et al. (2019). Dietary flavonoids luteolin and quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling. Antioxidants, 8(11), 557. https://doi.org/10.3390/antiox8110557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lin, Y. S., Tsai, P. H., Kandaswami, C. C., Cheng, C. H., Ke, F. C., Lee, P. P., et al. (2011). Effects of dietary flavonoids, luteolin, and quercetin on the reversal of epithelial-mesenchymal transition in A431 epidermal cancer cells. Cancer Science, 102(10), 1829–1839. https://doi.org/10.1111/j.1349-7006.2011.02035.x

    Article  CAS  PubMed  Google Scholar 

  207. Lin, T. H., Hsu, W. H., Tsai, P. H., Huang, Y. T., Lin, C. W., Chen, K. C., et al. (2017). Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food and Function, 8(4), 1558–1568. https://doi.org/10.1039/c6fo00551a

    Article  CAS  PubMed  Google Scholar 

  208. Fakhri, S., Abbaszadeh, F., Moradi, S. Z., Cao, H., Khan, H., & Xiao, J. (2022). Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury. Oxidative Medicine and Cellular Longevity, 2022, 1–34.

    Google Scholar 

  209. Fakhri, S., Moradi, S. Z., Ash-Rafzadeh, A., & Bishayee, A. (2021). Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacology Research, 117, 105961.

    Google Scholar 

  210. Fang, J., Zhou, Q., Liu, L. Z., Xia, C., Hu, X., Shi, X., et al. (2007). Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis, 28(4), 858–864. https://doi.org/10.1093/carcin/bgl205

    Article  CAS  PubMed  Google Scholar 

  211. Liu, L. Z., Fang, J., Zhou, Q., Hu, X. W., Shi, X. L., & Jiang, B. H. (2005). Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: Implication of chemoprevention of lung cancer. Molecular Pharmacology, 68(3), 635–643. https://doi.org/10.1124/mol.105.011254

    Article  CAS  PubMed  Google Scholar 

  212. Alipour, M. (2013). Inhibitory effects of flavonoid Apigenin by oral administration on angiogenesis of ovarian cancer through decrease VEGF expression in mouse model. Molecular Cancer Therapeutics, 12(11), C7. https://doi.org/10.1158/1535-7163.Targ-13-c7

    Article  Google Scholar 

  213. Cao, H. H., Chu, J. H., Kwan, H. Y., Su, T., Yu, H., Cheng, C. Y., et al. (2016). Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Science and Reports, 6, 21731. https://doi.org/10.1038/srep21731

    Article  CAS  Google Scholar 

  214. Chien, M. H., Lin, Y. W., Wen, Y. C., Yang, Y. C., Hsiao, M., Chang, J. L., et al. (2019). Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. Journal of Experimental and Clinical Cancer Research, 38(1), 246. https://doi.org/10.1186/s13046-019-1247-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chang, J. H., Cheng, C. W., Yang, Y. C., Chen, W. S., Hung, W. Y., Chow, J. M., et al. (2018). Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. Journal of Experimental and Clinical Cancer Research, 37(1), 199. https://doi.org/10.1186/s13046-018-0869-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Medhat, A. M., Azab, K. S., Said, M. M., El Fatih, N. M., & El Bakary, N. M. (2017). Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumour Biology, 39(10), 1010428317728480. https://doi.org/10.1177/1010428317728480

    Article  CAS  PubMed  Google Scholar 

  217. Shukla, S., MacLennan, G. T., Fu, P., & Gupta, S. (2012). Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model. Pharmaceutical Research, 29(6), 1506–1517. https://doi.org/10.1007/s11095-011-0625-0

    Article  CAS  PubMed  Google Scholar 

  218. Shukla, S., Shankar, E., Fu, P., MacLennan, G. T., & Gupta, S. (2015). Suppression of NF-κB and NF-κB-regulated gene expression by apigenin through IκBα and IKK pathway in TRAMP mice. PloS one, 10(9), e0138710. https://doi.org/10.1371/journal.pone.0138710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhou, P., Zheng, Z. H., Wan, T., Wu, J., Liao, C. W., & Sun, X. J. (2021). Vitexin inhibits gastric cancer growth and metastasis through HMGB1-mediated inactivation of the PI3K/AKT/mTOR/HIF-1 alpha signaling pathway. Journal of Gastric Cancer, 21(4), 439–456. https://doi.org/10.5230/jgc.2021.21.e40

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ulusoy, H. G., & Sanlier, N. (2020). A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Critical Reviews in Food Science and Nutrition, 60(19), 3290–3303.

    CAS  PubMed  Google Scholar 

  221. Chen, K. C., Chen, C. Y., Lin, C. R., Yang, T. Y., Chen, T. H., Wu, L. C., et al. (2013). Luteolin attenuates TGF-β1-induced epithelial-mesenchymal transition of lung cancer cells by interfering in the PI3K/Akt-NF-κB-Snail pathway. Life Sciences, 93(24), 924–933. https://doi.org/10.1016/j.lfs.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  222. Ruan, J., Zhang, L., Yan, L., Liu, Y., Yue, Z., Chen, L., et al. (2012). Inhibition of hypoxia-induced epithelial mesenchymal transition by luteolin in non-small cell lung cancer cells. Molecular Medicine Reports, 6(1), 232–238. https://doi.org/10.3892/mmr.2012.884

    Article  CAS  PubMed  Google Scholar 

  223. Cook, M. T., Liang, Y., Besch-Williford, C., & Hyder, S. M. (2017). Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer, 9, 9–19. https://doi.org/10.2147/bctt.S124860

    Article  CAS  PubMed  Google Scholar 

  224. Lin, D., Kuang, G., Wan, J., Zhang, X., Li, H., Gong, X., et al. (2017). Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncology Reports, 37(2), 895–902. https://doi.org/10.3892/or.2016.5311

    Article  CAS  PubMed  Google Scholar 

  225. Wu, H. T., Lin, J., Liu, Y. E., Chen, H. F., Hsu, K. W., Lin, S. H., et al. (2021). Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine, 81, 153437. https://doi.org/10.1016/j.phymed.2020.153437

    Article  CAS  PubMed  Google Scholar 

  226. Pu, Y., Zhang, T., Wang, J., Mao, Z., Duan, B., Long, Y., et al. (2018). Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. Journal of Cancer, 9(20), 3669–3675. https://doi.org/10.7150/jca.27183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zang, M., Hu, L., Zhang, B., Zhu, Z., Li, J., Zhu, Z., et al. (2017). Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer. Biochemical and Biophysical Research Communications, 490(3), 913–919. https://doi.org/10.1016/j.bbrc.2017.06.140

    Article  CAS  PubMed  Google Scholar 

  228. Zang, M. D., Hu, L., Fan, Z. Y., Wang, H. X., Zhu, Z. L., Cao, S., et al. (2017). Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. Journal of Translational Medicine, 15(1), 52. https://doi.org/10.1186/s12967-017-1151-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Qin, T., Zhao, J., Liu, X., Li, L., Zhang, X., Shi, X., et al. (2021). Luteolin combined with low-dose paclitaxel synergistically inhibits epithelial-mesenchymal transition and induces cell apoptosis on esophageal carcinoma in vitro and in vivo. Phytotherapy Research, 35(11), 6228–6240. https://doi.org/10.1002/ptr.7267

    Article  CAS  PubMed  Google Scholar 

  230. Zhao, J., Li, L., Wang, Z., Li, L., He, M., Han, S., et al. (2021). Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability. Pharmacology Research, 174, 105939. https://doi.org/10.1016/j.phrs.2021.105939

    Article  CAS  Google Scholar 

  231. Li, N., Zhang, Z., Jiang, G., Sun, H., & Yu, D. (2019). Nobiletin sensitizes colorectal cancer cells to oxaliplatin by PI3K/Akt/MTOR pathway. Front Bioscience, 24, 303–312.

    Google Scholar 

  232. Ruan, J. S., Liu, Y. P., Zhang, L., Yan, L. G., Fan, F. T., Shen, C. S., et al. (2012). Luteolin reduces the invasive potential of malignant melanoma cells by targeting β3 integrin and the epithelial-mesenchymal transition. Acta Pharmacologica Sinica, 33(10), 1325–1331. https://doi.org/10.1038/aps.2012.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Pratheeshkumar, P., Son, Y. O., Budhraja, A., Wang, X., Ding, S., Wang, L., et al. (2012). Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PloS one, 7(12), e52279. https://doi.org/10.1371/journal.pone.0052279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yu, W., & Ling, L. (2019). Research progress of antitumor activity by baicalin and baicalein. International Journal of Sciences, 8(06), 11–14.

    Google Scholar 

  235. Wang, Y., Wang, H., Zhou, R., Zhong, W., Lu, S., Ma, Z., et al. (2017). Baicalin inhibits human osteosarcoma cells invasion, metastasis, and anoikis resistance by suppressing the transforming growth factor-β1-induced epithelial-to-mesenchymal transition. Anti-Cancer Drugs, 28(6), 581–587. https://doi.org/10.1097/CAD.0000000000000495

    Article  CAS  PubMed  Google Scholar 

  236. Zhou, T., Zhang, A., Kuang, G., Gong, X., Jiang, R., Lin, D., et al. (2017). Baicalin inhibits the metastasis of highly aggressive breast cancer cells by reversing epithelial-to-mesenchymal transition by targeting β-catenin signaling. Oncology Reports, 38(6), 3599–3607. https://doi.org/10.3892/or.2017.6011

    Article  CAS  PubMed  Google Scholar 

  237. Yang, B., Bai, H., Sa, Y., Zhu, P., & Liu, P. (2020). Inhibiting EMT, stemness and cell cycle involved in baicalin-induced growth inhibition and apoptosis in colorectal cancer cells. Journal of Cancer, 11(8), 2303–2317. https://doi.org/10.7150/jca.37242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Zheng, L., Zhou, Z., & He, Z. (2016). Baicalin inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses pancreatic cancer cell migration and invasion. International Journal of Clinical and Experimental Pathology, 9(2), 1054–1060.

    CAS  Google Scholar 

  239. Zeng, Q., Zhang, Y., Zhang, W., & Guo, Q. (2020). Baicalein suppresses the proliferation and invasiveness of colorectal cancer cells by inhibiting Snail-induced epithelial-mesenchymal transition. Molecular Medicine Reports, 21(6), 2544–2552. https://doi.org/10.3892/mmr.2020.11051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Yu, G., Chen, L., Hu, Y., Yuan, Z., Luo, Y., & Xiong, Y. (2021). Antitumor effects of baicalein and its mechanism via TGFβ pathway in cervical cancer HeLa cells. Evid Based Complement Alternat Med, 2021, 5527190. https://doi.org/10.1155/2021/5527190

    Article  PubMed  PubMed Central  Google Scholar 

  241. Su, G., Chen, H., & Sun, X. (2018). Baicalein suppresses non small cell lung cancer cell proliferation, invasion and Notch signaling pathway. Cancer Biomarkers, 22(1), 13–18. https://doi.org/10.3233/cbm-170673

    Article  CAS  PubMed  Google Scholar 

  242. Park, C. H., Han, S. E., Nam-Goong, I. S., Kim, Y. I., & Kim, E. S. (2018). Combined effects of baicalein and docetaxel on apoptosis in 8505c anaplastic thyroid cancer cells via downregulation of the ERK and Akt/mTOR pathways. Endocrinology and Metabolism, 33(1), 121–132. https://doi.org/10.3803/EnM.2018.33.1.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ma, X., Yan, W., Dai, Z., Gao, X., Ma, Y., Xu, Q., et al. (2016). Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway. Drug Design Development Therapy, 10, 1419–1441. https://doi.org/10.2147/dddt.S102541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Guo, X., Chen, X., Wang, H., Wang, W., Wang, H., Teng, L., et al. (2017). Baicalein inhibits the invasion, migration and epithelial-mesenchymal transition of BGC-823 cells through NF-κB/snail signaling pathway. International Journal of Clinical and Experimental Medicine, 10(9), 14093–14099.

    Google Scholar 

  245. Rauf, A., Olatunde, A., Imran, M., Alhumaydhi, F. A., Aljohani, A. S. M., Khan, S. A., et al. (2021). Honokiol: A review of its pharmacological potential and therapeutic insights. Phytomedicine, 90, 153647. https://doi.org/10.1016/j.phymed.2021.153647

    Article  CAS  PubMed  Google Scholar 

  246. Avtanski, D. B., Nagalingam, A., Bonner, M. Y., Arbiser, J. L., Saxena, N. K., & Sharma, D. (2014). Honokiol inhibits epithelial-mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E-cadherin axis. Molecular Oncology, 8(3), 565–580. https://doi.org/10.1016/j.molonc.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wang, W. D., Shang, Y., Li, Y., & Chen, S. Z. (2019). Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacologica Sinica, 40(9), 1219–1227. https://doi.org/10.1038/s41401-019-0240-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Qin, T., Li, J., Xiao, Y., Wang, X., Gong, M., Wang, Q., et al. (2021). Honokiol suppresses perineural invasion of pancreatic cancer by inhibiting SMAD2/3 signaling. Frontiers and Oncology, 11, 728583. https://doi.org/10.3389/fonc.2021.728583

    Article  CAS  Google Scholar 

  249. Lv, X. Q., Qiao, X. R., Su, L., & Chen, S. Z. (2016). Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP. Acta Pharmacologica Sinica, 37(12), 1574–1586. https://doi.org/10.1038/aps.2016.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Liu, S. H., Wang, K. B., Lan, K. H., Lee, W. J., Pan, H. C., Wu, S. M., et al. (2012). Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PloS one, 7(8), e43711. https://doi.org/10.1371/journal.pone.0043711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wu, K., Ning, Z., Zeng, J., Fan, J., Zhou, J., Zhang, T., et al. (2013). Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cellular Signalling, 25(12), 2625–2633. https://doi.org/10.1016/j.cellsig.2013.08.028

    Article  CAS  PubMed  Google Scholar 

  252. Li, F., Sun, Y., Jia, J., Yang, C., Tang, X., Jin, B., et al. (2018). Silibinin attenuates TGF-β1-induced migration and invasion via EMT suppression and is associated with COX-2 downregulation in bladder transitional cell carcinoma. Oncology Reports, 40(6), 3543–3550. https://doi.org/10.3892/or.2018.6728

    Article  CAS  PubMed  Google Scholar 

  253. Nambiar, D. K., Rajamani, P., & Singh, R. P. (2015). Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells. Biochemical and Biophysical Research Communications, 456(1), 262–268. https://doi.org/10.1016/j.bbrc.2014.11.069

    Article  CAS  PubMed  Google Scholar 

  254. Deep, G., Kumar, R., Jain, A. K., Agarwal, C., & Agarwal, R. (2014). Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling. Mutation Research, 768, 35–46. https://doi.org/10.1016/j.mrfmmm.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Deep, G., Kumar, R., Nambiar, D. K., Jain, A. K., Ramteke, A. M., Serkova, N. J., et al. (2017). Silibinin inhibits hypoxia-induced HIF-1 alpha-mediated signaling, angiogenesis, and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics. Molecular Carcinogenesis, 56(3), 833–848. https://doi.org/10.1002/mc.22537

    Article  CAS  PubMed  Google Scholar 

  256. Fan, Y., Hou, T., Dan, W., Liu, T., Luan, J., Liu, B., et al. (2020). Silibinin inhibits epithelial-mesenchymal transition of renal cell carcinoma through autophagy-dependent Wnt/β-catenin signaling. International Journal of Molecular Medicine, 45(5), 1341–1350. https://doi.org/10.3892/ijmm.2020.4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Gupta, A., Singh, A. K., Kumar, R., Jamieson, S., Pandey, A. K., & Bishayee, A. (2021). Neuroprotective potential of ellagic acid: A critical review. Advances in Nutrition, 12(4), 1211–1238. https://doi.org/10.1093/advances/nmab007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Mohammadinejad, A., Mohajeri, T., Aleyaghoob, G., Heidarian, F., & Kazemi Oskuee, R. (2021). Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2288

    Article  PubMed  Google Scholar 

  259. Ceci, C., Tentori, L., Atzori, M. G., Lacal, P. M., Bonanno, E., Scimeca, M., et al. (2016). Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth. Nutrients, 8(11), 744. https://doi.org/10.3390/nu8110744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Cheng, H., Lu, C., Tang, R., Pan, Y., Bao, S., Qiu, Y., et al. (2017). Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo. Oncotarget, 8(7), 12301–12310. https://doi.org/10.18632/oncotarget.14811

    Article  PubMed  PubMed Central  Google Scholar 

  261. Wang, N., Wang, Z. Y., Mo, S. L., Loo, T. Y., Wang, D. M., Luo, H. B., et al. (2012). Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Research and Treatment, 134(3), 943–955. https://doi.org/10.1007/s10549-012-1977-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zhao, M., Tang, S. N., Marsh, J. L., Shankar, S., & Srivastava, R. K. (2013). Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Letters, 337(2), 210–217. https://doi.org/10.1016/j.canlet.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  263. Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196.

    CAS  PubMed  Google Scholar 

  264. Chen, H. Y., Jiang, Y. W., Kuo, C. L., Way, T. D., Chou, Y. C., Chang, Y. S., et al. (2019). Chrysin inhibit human melanoma A375.S2 cell migration and invasion via affecting MAPK signaling and NF-κB signaling pathway in vitro. Environmental Toxicology, 34(4), 434–442. https://doi.org/10.1002/tox.22697

    Article  CAS  PubMed  Google Scholar 

  265. Yufei, Z., Yuqi, W., Binyue, H., Lingchen, T., Xi, C., Hoffelt, D., et al. (2020). Chrysin inhibits melanoma tumor metastasis via interfering with the FOXM1/β-catenin signaling. Journal of Agriculture and Food Chemistry, 68(35), 9358–9367. https://doi.org/10.1021/acs.jafc.0c03123

    Article  CAS  Google Scholar 

  266. Lirdprapamongkol, K., Sakurai, H., Abdelhamed, S., Yokoyama, S., Maruyama, T., Athikomkulchai, S., et al. (2013). A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncology Reports, 30(5), 2357–2364. https://doi.org/10.3892/or.2013.2667

    Article  CAS  PubMed  Google Scholar 

  267. Yang, B., Huang, J., Xiang, T., Yin, X., Luo, X., Huang, J., et al. (2014). Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. Journal of Applied Toxicology, 34(1), 105–112. https://doi.org/10.1002/jat.2941

    Article  CAS  PubMed  Google Scholar 

  268. Kashyap, D., Sharma, A., Sak, K., Tuli, H. S., Buttar, H. S., & Bishayee, A. (2018). Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life sciences, 194, 75–87. https://doi.org/10.1016/j.lfs.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  269. Liu, Y., Li, E., Xu, C., Su, Y., Qin, J. G., Chen, L., et al. (2018). Brain transcriptome profiling analysis of nile tilapia (Oreochromis niloticus) under long-term hypersaline stress. Frontiers in Physiology, 9, 219. https://doi.org/10.3389/fphys.2018.00219

    Article  PubMed  PubMed Central  Google Scholar 

  270. Liu, X. F., Long, H. J., Miao, X. Y., Liu, G. L., & Yao, H. L. (2017). Fisetin inhibits liver cancer growth in a mouse model: Relation to dopamine receptor. Oncology Reports, 38(1), 53–62. https://doi.org/10.3892/or.2017.5676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Pal, H. C., Diamond, A. C., Strickland, L. R., Kappes, J. C., Katiyar, S. K., Elmets, C. A., et al. (2016). Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma. Oncotarget, 7(2), 1227–1241. https://doi.org/10.18632/oncotarget.6237

    Article  PubMed  Google Scholar 

  272. Sechi, M., Lall, R. K., Afolabi, S. O., Singh, A., Joshi, D. C., Chiu, S. Y., et al. (2018). Fisetin targets YB-1/RSK axis independent of its effect on ERK signaling: Insights from in vitro and in vivo melanoma models. Science and Reports, 8(1), 15726. https://doi.org/10.1038/s41598-018-33879-w

    Article  CAS  Google Scholar 

  273. Tabasum, S., & Singh, R. P. (2019). Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chemico-Biological Interactions, 303, 14–21. https://doi.org/10.1016/j.cbi.2019.02.020

    Article  CAS  PubMed  Google Scholar 

  274. Moghaddam, R. H., Samimi, Z., Moradi, S. Z., Little, P. J., Xu, S., & Farzaei, M. H. (2020). Naringenin and naringin in cardiovascular disease prevention: A preclinical review. European Journal of Pharmacology, 173535, 173535.

    Google Scholar 

  275. Memariani, Z., Abbas, S. Q., Ul Hassan, S. S., Ahmadi, A., & Chabra, A. (2021). Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacology Research, 171, 105264. https://doi.org/10.1016/j.phrs.2020.105264

    Article  CAS  Google Scholar 

  276. Hermawan, A., Ikawati, M., Jenie, R. I., Khumaira, A., Putri, H., Nurhayati, I. P., et al. (2021). Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharmacuentical Journal, 29(1), 12–26. https://doi.org/10.1016/j.jsps.2020.12.002

    Article  CAS  Google Scholar 

  277. Chen, Y. Y., Chang, Y. M., Wang, K. Y., Chen, P. N., Hseu, Y. C., Chen, K. M., et al. (2019). Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environmental Toxicology, 34(3), 233–239. https://doi.org/10.1002/tox.22677

    Article  CAS  PubMed  Google Scholar 

  278. Han, K. Y., Chen, P. N., Hong, M. C., Hseu, Y. C., Chen, K. M., Hsu, L. S., et al. (2018). Naringenin attenuated prostate cancer invasion via reversal of epithelial to mesenchymal transition and inhibited uPA activity. Anticancer Research, 38(12), 6753–6758. https://doi.org/10.21873/anticanres.13045

    Article  CAS  PubMed  Google Scholar 

  279. Chen, Y. Y., Liang, J. J., Wang, D. L., Chen, J. B., Cao, J. P., Wang, Y., et al. (2023). Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Critical Reviews in Food Science and Nutrition63(23), 6309–6329.

  280. Da, C., Liu, Y., Zhan, Y., Liu, K., & Wang, R. (2016). Nobiletin inhibits epithelial-mesenchymal transition of human non-small cell lung cancer cells by antagonizing the TGF-β1/Smad3 signaling pathway. Oncology Reports, 35(5), 2767–2774. https://doi.org/10.3892/or.2016.4661

    Article  CAS  PubMed  Google Scholar 

  281. Liu, F., Zhang, S., Yin, M., Guo, L., Xu, M., & Wang, Y. (2018). Nobiletin inhibits hypoxia-induced epithelial-mesenchymal transition in renal cell carcinoma cells. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.27511

    Article  PubMed  PubMed Central  Google Scholar 

  282. Kim, J. K., & Park, S. U. (2020). Recent studies on kaempferol and its biological and pharmacological activities. EXCLI Journal, 19, 627–634.

    PubMed  PubMed Central  Google Scholar 

  283. Jo, E., Park, S. J., Choi, Y. S., Jeon, W. K., & Kim, B. C. (2015). Kaempferol suppresses transforming growth factor-β1-induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia, 17(7), 525–537. https://doi.org/10.1016/j.neo.2015.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Luo, H. T., Rankin, G. O., Liu, L. Z., Daddysman, M. K., Jiang, B. H., & Chen, Y. C. (2009). Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutrition and Cancer-an International Journal, 61(4), 554–563. https://doi.org/10.1080/01635580802666281

    Article  CAS  Google Scholar 

  285. Zhang, Z., Qiao, Y., Yang, L., Chen, Z., Li, T., Gu, M., et al. (2021). Kaempferol 3-O-gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF-β/ALK5/Smad signaling pathway. Phytotherapy Research, 35(11), 6310–6323. https://doi.org/10.1002/ptr.7278

    Article  CAS  PubMed  Google Scholar 

  286. Lv, F., Du, Q., Li, L., Xi, X., Liu, Q., Li, W., et al. (2021). Eriodictyol inhibits glioblastoma migration and invasion by reversing EMT via downregulation of the P38 MAPK/GSK-3β/ZEB1 pathway. Europaea Journal Pharmacology, 900, 174069. https://doi.org/10.1016/j.ejphar.2021.174069

    Article  CAS  Google Scholar 

  287. Xu, B., Jiang, C., Han, H., Liu, H., Tang, M., Liu, L., et al. (2015). Icaritin inhibits the invasion and epithelial-to-mesenchymal transition of glioblastoma cells by targeting EMMPRIN via PTEN/AKt/HIF-1α signalling. Clinical and Experimental Pharmacology and Physiology, 42(12), 1296–1307. https://doi.org/10.1111/1440-1681.12488

    Article  CAS  PubMed  Google Scholar 

  288. Xiong, X., Tang, N., Lai, X., Zhang, J., Wen, W., Li, X., et al. (2021). Insights into amentoflavone: A natural multifunctional biflavonoid. Frontiers in Pharmacology, 12, https://doi.org/10.3389/fphar.2021.768708.

  289. Chen, W. T., Chen, C. H., Su, H. T., Yueh, P. F., Hsu, F. T., & Chiang, I. T. (2021). Amentoflavone induces cell-cycle arrest, apoptosis, and invasion inhibition in non-small cell lung cancer cells. Anticancer Research, 41(3), 1357–1364. https://doi.org/10.21873/anticanres.14893

    Article  CAS  PubMed  Google Scholar 

  290. Kim, G. L., Jang, E. H., Lee, D. E., Bang, C., Kang, H., Kim, S., et al. (2020). Amentoflavone, active compound of Selaginella tamariscina, inhibits in vitro and in vivo TGF-β-induced metastasis of human cancer cells. Archives of Biochemistry and Biophysics, 687, 108384. https://doi.org/10.1016/j.abb.2020.108384

    Article  CAS  PubMed  Google Scholar 

  291. Kang, H. R., Moon, J. Y., Ediriweera, M. K., Song, Y. W., Cho, M., Kasiviswanathan, D., et al. (2020). Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549-IR) by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway. Food Science and Nutrition, 8(4), 2059–2067. https://doi.org/10.1002/fsn3.1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Zhou, Z., Mao, W., Li, Y., Qi, C., & He, Y. (2019). Myricetin inhibits breast tumor growth and angiogenesis by regulating VEGF/VEGFR2 and p38MAPK signaling pathways. Anatomical Record, 302(12), 2186–2192. https://doi.org/10.1002/ar.24222

    Article  CAS  Google Scholar 

  293. Ko, H. (2015). Geraniin inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorganic and Medicinal Chemistry Letters, 25(17), 3529–3534. https://doi.org/10.1016/j.bmcl.2015.06.093

    Article  CAS  PubMed  Google Scholar 

  294. Nonpanya, N., Sanookpan, K., Sriratanasak, N., Vinayanuwattikun, C., Wichadakul, D., Sritularak, B., et al. (2021). Artocarpin targets focal adhesion kinase-dependent epithelial to mesenchymal transition and suppresses migratory-associated integrins in lung cancer cells. Pharmaceutics, 13(4), 554. https://doi.org/10.3390/pharmaceutics13040554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Mao, W., Yin, H., Chen, W., Zhao, T., Wu, S., Jin, H., et al. (2020). Network pharmacology and experimental evidence reveal dioscin suppresses proliferation, invasion, and EMT via AKT/GSK3b/mTOR signaling in lung adenocarcinoma. Drug Design, Development and Therapy, 14, 2135–2147. https://doi.org/10.2147/dddt.S249651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Lim, W. C., Kim, H., Kim, Y. J., Choi, K. C., Lee, I. H., Lee, K. H., et al. (2017). Dioscin suppresses TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration and invasion. Bioorganic and Medicinal Chemistry Letters, 27(15), 3342–3348. https://doi.org/10.1016/j.bmcl.2017.06.014

    Article  CAS  PubMed  Google Scholar 

  297. Kim, K. M., Heo, D. R., Lee, J., Park, J. S., Baek, M. G., Yi, J. M., et al. (2015). 5,3′-Dihydroxy-6,7,4′-trimethoxyflavanone exerts its anticancer and antiangiogenesis effects through regulation of the Akt/mTOR signaling pathway in human lung cancer cells. Chemico-Biological Interactions, 225, 32–39. https://doi.org/10.1016/j.cbi.2014.10.033

    Article  CAS  PubMed  Google Scholar 

  298. Li, B., Chen, P., Wang, J. H., Li, L., Gong, J. L., & Yao, H. (2019). Farrerol overcomes the invasiveness of lung squamous cell carcinoma cells by regulating the expression of inducers of epithelial mesenchymal transition. Microbial Pathogenesis, 131, 277. https://doi.org/10.1016/j.micpath.2018.04.052

    Article  CAS  PubMed  Google Scholar 

  299. Lin, Y. S., Tsai, K. L., Chen, J. N., & Wu, C. S. (2020). Mangiferin inhibits lipopolysaccharide-induced epithelial-mesenchymal transition (EMT) and enhances the expression of tumor suppressor gene PER1 in non-small cell lung cancer cells. Environmental Toxicology, 35(10), 1070–1081. https://doi.org/10.1002/tox.22943

    Article  CAS  PubMed  Google Scholar 

  300. Tang, H., Liu, Y., Wang, C., Zheng, H., Chen, Y., Liu, W., et al. (2019). Inhibition of COX-2 and EGFR by melafolone improves anti-PD-1 therapy through vascular normalization and PD-L1 downregulation in lung cancer. Journal of Pharmacology and Experimental Therapeutics, 368(3), 401–413. https://doi.org/10.1124/jpet.118.254359

    Article  CAS  PubMed  Google Scholar 

  301. Xu, Y., Lou, Z., & Lee, S. H. (2017). Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells. Biochemical and Biophysical Research Communications, 493(2), 934–939. https://doi.org/10.1016/j.bbrc.2017.09.117

    Article  CAS  PubMed  Google Scholar 

  302. Song, J., Feng, L., Zhong, R., Xia, Z., Zhang, L., Cui, L., et al. (2017). Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Molecular Carcinogenesis, 56(1), 36–48. https://doi.org/10.1002/mc.22471

    Article  CAS  PubMed  Google Scholar 

  303. Harish, V., Haque, E., Śmiech, M., Taniguchi, H., Jamieson, S., Tewari, D., et al. (2021). Xanthohumol for human malignancies: Chemistry, pharmacokinetics and molecular targets. International Journal of Molecular Sciences, 22(9), 4478.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Ho, K. H., Chang, C. K., Chen, P. H., Wang, Y. J., Chang, W. C., & Chen, K. C. (2018). miR-4725-3p targeting stromal interacting molecule 1 signaling is involved in xanthohumol inhibition of glioma cell invasion. Journal of Neurochemistry, 146(3), 269–288. https://doi.org/10.1111/jnc.14459

    Article  CAS  PubMed  Google Scholar 

  305. Sławińska-Brych, A., Mizerska-Kowalska, M., Król, S. K., Stepulak, A., & Zdzisińska, B. (2021). Xanthohumol impairs the PMA-driven invasive behaviour of lung cancer cell line A549 and exerts anti-EMT action. Cells, 10(6), 1484. https://doi.org/10.3390/cells10061484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Chen, D., Li, D., Xu, X. B., Qiu, S., Luo, S., Qiu, E., et al. (2019). Galangin inhibits epithelial-mesenchymal transition and angiogenesis by downregulating CD44 in glioma. Journal of Cancer, 10(19), 4499–4508. https://doi.org/10.7150/jca.31487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Xiong, Y., Lai, X., Xiang, W., Zhou, J., Han, J., Li, H., et al. (2020). Galangin (GLN) suppresses proliferation, migration, and invasion of human glioblastoma cells by targeting Skp2-induced epithelial-mesenchymal transition (EMT). Oncotargets and Therapy, 13, 9235–9244. https://doi.org/10.2147/ott.S264209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Cao, J., Wang, H., Chen, F., Fang, J., Xu, A., Xi, W., et al. (2016). Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Molecular Medicine Reports, 13(5), 4238–4244. https://doi.org/10.3892/mmr.2016.5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Tuli, H. S., Tuorkey, M. J., Thakral, F., Sak, K., Kumar, M., Sharma, A. K., et al. (2019). Molecular mechanisms of action of genistein in cancer: Recent advances. Frontiers in Pharmacology, 10, 1336. https://doi.org/10.3389/fphar.2019.01336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Han, L., Zhang, H. W., Zhou, W. P., Chen, G. M., & Guo, K. J. (2012). The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1 in vitro. Chinese Medical Journal, 125(11), 2032–2040.

    CAS  PubMed  Google Scholar 

  311. Guo, Y., Xiao, Y., Guo, H., Zhu, H., Chen, D., Wang, J., et al. (2021). The anti-dysenteric drug fraxetin enhances anti-tumor efficacy of gemcitabine and suppresses pancreatic cancer development by antagonizing STAT3 activation. Aging, 13(14), 18545–18563. https://doi.org/10.18632/aging.203301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Qiao, Y., Yan, L. J., & Yan, C. (2020). Sauchinone inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells through the Wnt/β-catenin pathway. Anti-Cancer Drugs, 31(9), 918–924. https://doi.org/10.1097/cad.0000000000000956

    Article  CAS  PubMed  Google Scholar 

  313. Zhu, H., Xiao, Y., Guo, H., Guo, Y., Huang, Y., Shan, Y., et al. (2021). The isoflavone puerarin exerts anti-tumor activity in pancreatic ductal adenocarcinoma by suppressing mTOR-mediated glucose metabolism. Aging, 13(23), 25089–25105. https://doi.org/10.18632/aging.203725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. He, L., Wu, Y., Lin, L., Wang, J., Wu, Y., Chen, Y., et al. (2011). Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Science, 102(1), 219–225. https://doi.org/10.1111/j.1349-7006.2010.01778.x

    Article  CAS  PubMed  Google Scholar 

  315. Xie, J., Gao, H., Peng, J., Han, Y., Chen, X., Jiang, Q., et al. (2020). Erratum: Hispidulin prevents hypoxia-induced epithelial-mesenchymal transition in human colon carcinoma cells. American Journal of Cancer Research, 10(4), 1271–1273.

    PubMed  PubMed Central  Google Scholar 

  316. Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., et al. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacology Research, 171, 105759. https://doi.org/10.1016/j.phrs.2021.105759

    Article  CAS  Google Scholar 

  317. Liang, Y., Feng, G., Wu, L., Zhong, S., Gao, X., Tong, Y., et al. (2019). Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway. Drug Design, Development and Therapy, 13, 1335–1345. https://doi.org/10.2147/dddt.s199182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Lei, K., Ma, B., Shi, P., Jin, C., Ling, T., Li, L., et al. (2020). Icariin mitigates the growth and invasion ability of human oral squamous cell carcinoma via inhibiting toll-like receptor 4 and phosphorylation of NF-κB P65. Oncotargets and Therapy, 13, 299–307. https://doi.org/10.2147/ott.S214514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Prasad, P., Vasas, A., Hohmann, J., Bishayee, A., & Sinha, D. (2019). Cirsiliol suppressed epithelial to mesenchymal transition in B16F10 malignant melanoma cells through alteration of the PI3K/Akt/NF-κB signaling pathway. Int J Mol Sci, 20(3), 608. https://doi.org/10.3390/ijms20030608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Chen, C., Huang, S., Chen, C. L., Su, S. B., & Fang, D. D. (2019). Isoliquiritigenin inhibits ovarian cancer metastasis by reversing epithelial-to-mesenchymal transition. Molecules, 24(20), 3725. https://doi.org/10.3390/molecules24203725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Chen, H. Y., Chiang, Y. F., Huang, J. S., Huang, T. C., Shih, Y. H., Wang, K. L., et al. (2021). Isoliquiritigenin reverses epithelial-mesenchymal transition through modulation of the TGF-β/Smad signaling pathway in endometrial cancer. Cancers, 13(6), 1236. https://doi.org/10.3390/cancers13061236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Wang, K. L., Hsia, S. M., Chan, C. J., Chang, F. Y., Huang, C. Y., Bau, D. T., et al. (2013). Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opinion on Therapeutic Targets, 17(4), 337–349. https://doi.org/10.1517/14728222.2013.756869

    Article  CAS  PubMed  Google Scholar 

  323. Wang, Z., Wang, N., Han, S., Wang, D., Mo, S., Yu, L., et al. (2013). Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PloS One, 8(7), e68566. https://doi.org/10.1371/journal.pone.0068566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Liu, T., Liu, P., Ding, F., Yu, N., Li, S., Wang, S., et al. (2015). Ampelopsin reduces the migration and invasion of ovarian cancer cells via inhibition of epithelial-to-mesenchymal transition. Oncology Reports, 33(2), 861–867. https://doi.org/10.3892/or.2014.3672

    Article  CAS  PubMed  Google Scholar 

  325. Hsieh, Y. S., Chu, S. C., Huang, S. C., Kao, S. H., Lin, M. S., & Chen, P. N. (2021). Gossypol reduces metastasis and epithelial-mesenchymal transition by targeting protease in human cervical cancer. American Journal of Chinese Medicine, 49(1), 181–198. https://doi.org/10.1142/s0192415x21500105

    Article  CAS  PubMed  Google Scholar 

  326. Li, C. Y., Wang, Q., Wang, X., Li, G., Shen, S., & Wei, X. (2019). Scutellarin inhibits the invasive potential of malignant melanoma cells through the suppression epithelial-mesenchymal transition and angiogenesis via the PI3K/Akt/mTOR signaling pathway. Europe Journal Pharmacology, 858, 172463. https://doi.org/10.1016/j.ejphar.2019.172463

    Article  CAS  Google Scholar 

  327. Liu, K., Tian, T., Zheng, Y., Zhou, L., Dai, C., Wang, M., et al. (2019). Scutellarin inhibits proliferation and invasion of hepatocellular carcinoma cells via down-regulation of JAK2/STAT3 pathway. Journal of Cellular and Molecular Medicine, 23(4), 3040–3044. https://doi.org/10.1111/jcmm.14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Lv, W. L., Liu, Q., An, J. H., & Song, X. Y. (2019). Scutellarin inhibits hypoxia-induced epithelial-mesenchymal transition in bladder cancer cells. Journal of Cellular Physiology, 234(12), 23169–23175. https://doi.org/10.1002/jcp.28883

    Article  CAS  PubMed  Google Scholar 

  329. Liao, K. F., Chiu, T. L., Chang, S. F., Wang, M. J., & Chiu, S. C. (2021). Hispolon induces apoptosis, suppresses migration and invasion of glioblastoma cells and inhibits GBM xenograft tumor growth in vivo. Molecules, 26(15), 449. https://doi.org/10.3390/molecules26154497

    Article  CAS  Google Scholar 

  330. Liu, D., Li, Z., Yang, Z., Ma, J., & Mai, S. (2021). Ginkgoic acid impedes gastric cancer cell proliferation, migration and EMT through inhibiting the SUMOylation of IGF-1R. Chemico-Biological Interactions, 337, 109394. https://doi.org/10.1016/j.cbi.2021.109394

    Article  CAS  PubMed  Google Scholar 

  331. Wu, S., Huang, J., Hui, K., Yue, Y., Gu, Y., Ning, Z., et al. (2018). 2’-Hydroxyflavanone inhibits epithelial-mesenchymal transition, and cell migration and invasion via suppression of the Wnt/β-catenin signaling pathway in prostate cancer. Oncology Reports, 40(5), 2836–2843. https://doi.org/10.3892/or.2018.6678

    Article  CAS  PubMed  Google Scholar 

  332. Niu, W., Xu, L., Li, J., Zhai, Y., Sun, Z., Shi, W., et al. (2020). Polyphyllin II inhibits human bladder cancer migration and invasion by regulating EMT-associated factors and MMPs. Oncology Letters, 20(3), 2928–2936. https://doi.org/10.3892/ol.2020.11839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Balestrieri, C., Felice, F., Piacente, S., Pizza, C., Montoro, P., Oleszek, W., et al. (2006). Relative effects of phenolic constituents from Yucca schidigera Roezl. bark on Kaposi’s sarcoma cell proliferation, migration, and PAF synthesis. Biochemical Pharmacology, 71(10), 1479–1487. https://doi.org/10.1016/j.bcp.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  334. Alagawany, M., Abd El-Hack, M. E., Farag, M. R., Gopi, M., Karthik, K., Malik, Y. S., et al. (2017). Rosmarinic acid: Modes of action, medicinal values and health benefits. Animal Health Research Reviews, 18(2), 167–176. https://doi.org/10.1017/S1466252317000081

    Article  PubMed  Google Scholar 

  335. Ma, Z., Yang, J., Yang, Y., Wang, X., Chen, G., Shi, A., et al. (2020). Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Phytomedicine, 68, 153186. https://doi.org/10.1016/j.phymed.2020.153186

    Article  CAS  PubMed  Google Scholar 

  336. Lu, K. H., Chen, P. N., Hsieh, Y. H., Lin, C. Y., Cheng, F. Y., Chiu, P. C., et al. (2016). 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food and Chemical Toxicology, 97, 177–186. https://doi.org/10.1016/j.fct.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  337. Wang, J., Chen, H., Hu, Z., Ma, K., & Wang, H. (2021). Hesperetin regulates transforming growth factor-β1/Smads pathway to suppress epithelial-mesenchymal transition -mediated invasion and migration in cervical cancer cell. Anti-Cancer Drugs, 32(9), 930–938. https://doi.org/10.1097/cad.0000000000001085

    Article  CAS  PubMed  Google Scholar 

  338. Wang, Z., Liu, Z., Yu, G., Nie, X., Jia, W., Liu, R. E., et al. (2018). Paeoniflorin inhibits migration and invasion of human glioblastoma cells via suppression transforming growth factor β-induced epithelial-mesenchymal transition. Neurochemical Research, 43(3), 760–774. https://doi.org/10.1007/s11064-018-2478-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Zhang, J. W., Li, L. X., Wu, W. Z., Pan, T. J., Yang, Z. S., & Yang, Y. K. (2018). Anti-tumor effects of paeoniflorin on epithelial-to-mesenchymal transition in human colorectal cancer cells. Medical Science Monitor, 24, 6405–6413. https://doi.org/10.12659/msm.912227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Shin, M. K., Jeon, Y. D., Hong, S. H., Kang, S. H., Kee, J. Y., & Jin, J. S. (2021). In vivo and in vitro effects of tracheloside on colorectal cancer cell proliferation and metastasis. Antioxidants, 10(4), 513. https://doi.org/10.3390/antiox10040513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Meng, F. C., & Lin, J. K. (2019). Liquiritigenin inhibits colorectal cancer proliferation, invasion, and epithelial-to-mesenchymal transition by decreasing expression of runt-related transcription factor 2. Oncology Research, 27(2), 139–146. https://doi.org/10.3727/096504018x15185747911701

    Article  PubMed  PubMed Central  Google Scholar 

  342. Hsiao, Y. H., Chen, N. C., Koh, Y. C., Nagabhushanam, K., Ho, C. T., & Pan, M. H. (2019). Pterostilbene inhibits adipocyte conditioned-medium-induced colorectal cancer cell migration through targeting FABP5-related signaling pathway. Journal of Agriculture and Food Chemistry, 67(37), 10321–10329. https://doi.org/10.1021/acs.jafc.9b03997

    Article  CAS  Google Scholar 

  343. Butt, S. S., Khan, K., Badshah, Y., Rafiq, M., & Shabbir, M. (2021). Evaluation of pro-apoptotic potential of taxifolin against liver cancer. PeerJ, 9, e11276. https://doi.org/10.7717/peerj.11276

    Article  PubMed  PubMed Central  Google Scholar 

  344. Huo, T. X., Wang, X. P., Yu, Z., Kong, B., He, Y., Guo, Q. L., et al. (2021). Oroxylin A inhibits the migration of hepatocellular carcinoma cells by inducing NAG-1 expression. Acta Pharmacologica Sinica. https://doi.org/10.1038/s41401-021-00695-4

    Article  PubMed  PubMed Central  Google Scholar 

  345. Hwang, S. T., Yang, M. H., Kumar, A. P., Sethi, G., & Ahn, K. S. (2020). Corilagin represses epithelial to mesenchymal transition process through modulating Wnt/β-catenin signaling cascade. Biomolecules, 10(10), 1406. https://doi.org/10.3390/biom10101406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Yang, F., Li, J., Zhu, J., Wang, D., Chen, S., & Bai, X. (2015). Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. European Journal of Pharmacology, 754, 105–114. https://doi.org/10.1016/j.ejphar.2015.02.015

    Article  CAS  PubMed  Google Scholar 

  347. Yang, X., Xie, J., Liu, X., Li, Z., Fang, K., Zhang, L., et al. (2019). Autophagy induction by xanthoangelol exhibits anti-metastatic activities in hepatocellular carcinoma. Cell Biochemistry and Function, 37(3), 128–138. https://doi.org/10.1002/cbf.3374

    Article  CAS  PubMed  Google Scholar 

  348. Yin, W., Xu, J., Li, C., Dai, X., Wu, T., & Wen, J. (2020). Plantamajoside inhibits the proliferation and epithelial-to-mesenchymal transition in hepatocellular carcinoma cells via modulating hypoxia-inducible factor-1α-dependent gene expression. Cell Biology International, 44(8), 1616–1627. https://doi.org/10.1002/cbin.11354

    Article  CAS  PubMed  Google Scholar 

  349. Zuo, X., Li, L., & Sun, L. (2021). Plantamajoside inhibits hypoxia-induced migration and invasion of human cervical cancer cells through the NF-κB and PI3K/akt pathways. Journal of Receptor and Signal Transduction Research, 41(4), 339–348. https://doi.org/10.1080/10799893.2020.1808679

    Article  CAS  PubMed  Google Scholar 

  350. Jiang, H., Wu, D., Xu, D., Yu, H., Zhao, Z., Ma, D., et al. (2017). Eupafolin exhibits potent anti-angiogenic and antitumor activity in hepatocellular carcinoma. International Journal of Biological Sciences, 13(6), 701–711. https://doi.org/10.7150/ijbs.17534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Song, H., Lim, D. Y., Jung, J. I., Cho, H. J., Park, S. Y., Kwon, G. T., et al. (2017). Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: A mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis. Oncotarget, 8(19), 32027–32042. https://doi.org/10.18632/oncotarget.16757

    Article  PubMed  PubMed Central  Google Scholar 

  352. Zhang, L., Chen, W., & Li, X. (2008). A novel anticancer effect of butein: Inhibition of invasion through the ERK1/2 and NF-kappa B signaling pathways in bladder cancer cells. FEBS Letters, 582(13), 1821–1828. https://doi.org/10.1016/j.febslet.2008.04.046

    Article  CAS  PubMed  Google Scholar 

  353. Farahi, A., Abedini, M. R., Javdani, H., Arzi, L., Chamani, E., Farhoudi, R., et al. (2021). Crocin and Metformin suppress metastatic breast cancer progression via VEGF and MMP9 downregulations: In vitro and in vivo studies. Molecular and Cellular Biochemistry, 476(9), 3341–3351. https://doi.org/10.1007/s11010-020-04043-8

    Article  CAS  PubMed  Google Scholar 

  354. Ju, P., Ding, W., Chen, J., Cheng, Y., Yang, B., Huang, L., et al. (2020). The protective effects of Mogroside V and its metabolite 11-oxo-mogrol of intestinal microbiota against MK801-induced neuronal damages. Psychopharmacology, 237(4), 1011–1026. https://doi.org/10.1007/s00213-019-05431-9

    Article  CAS  PubMed  Google Scholar 

  355. Jin, H., Lee, W. S., Eun, S. Y., Jung, J. H., Park, H. S., Kim, G., et al. (2014). Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB-231 partly through suppression of the Akt pathway. International Journal of Oncology, 45(4), 1629–1637. https://doi.org/10.3892/ijo.2014.2535

    Article  CAS  PubMed  Google Scholar 

  356. Li, Y., Zhang, Y., Liu, X., Wang, M., Wang, P., Yang, J., et al. (2018). Lutein inhibits proliferation, invasion and migration of hypoxic breast cancer cells via downregulation of HES1. International Journal of Oncology, 52(6), 2119–2129. https://doi.org/10.3892/ijo.2018.4332

    Article  CAS  PubMed  Google Scholar 

  357. Pan, L., Duan, Y., Ma, F., & Lou, L. (2020). Punicalagin inhibits the viability, migration, invasion, and EMT by regulating GOLPH3 in breast cancer cells. Journal of Receptor and Signal Transduction Research, 40(2), 173–180. https://doi.org/10.1080/10799893.2020.1719152

    Article  CAS  PubMed  Google Scholar 

  358. Zhang, X., Lin, D., Jiang, R., Li, H., Wan, J., & Li, H. (2016). Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncology Reports, 36(1), 271–278. https://doi.org/10.3892/or.2016.4804

    Article  CAS  PubMed  Google Scholar 

  359. Jia, H., Liu, M., Wang, X., Jiang, Q., Wang, S., Santhanam, R. K., et al. (2021). Cimigenoside functions as a novel γ-secretase inhibitor and inhibits the proliferation or metastasis of human breast cancer cells by γ-secretase/Notch axis. Pharmacology Research, 169, 105686. https://doi.org/10.1016/j.phrs.2021.105686

    Article  CAS  Google Scholar 

  360. Li, Q., Wang, Y., Xiao, H., Li, Y., Kan, X., Wang, X., et al. (2016). Chamaejasmenin B, a novel candidate, inhibits breast tumor metastasis by rebalancing TGF-beta paradox. Oncotarget, 7(30), 48180–48192. https://doi.org/10.18632/oncotarget.10193

    Article  PubMed  PubMed Central  Google Scholar 

  361. Song, H., Jung, J. I., Cho, H. J., Her, S., Kwon, S. H., Yu, R., et al. (2015). Inhibition of tumor progression by oral piceatannol in mouse 4T1 mammary cancer is associated with decreased angiogenesis and macrophage infiltration. Journal of Nutritional Biochemistry, 26(11), 1368–1378. https://doi.org/10.1016/j.jnutbio.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  362. Kwon, G. T., Jung, J. I., Song, H. R., Woo, E. Y., Jun, J. G., Kim, J. K., et al. (2012). Piceatannol inhibits migration and invasion of prostate cancer cells: Possible mediation by decreased interleukin-6 signaling. Journal of Nutritional Biochemistry, 23(3), 228–238. https://doi.org/10.1016/j.jnutbio.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  363. Shi, Q., Jiang, Z., Yang, J., Cheng, Y., Pang, Y., Zheng, N., et al. (2017). A flavonoid glycoside compound from Murraya paniculata (L.) interrupts metastatic characteristics of A549 cells by regulating STAT3/NF-κB/COX-2 and EGFR signaling pathways. AAPS Journal, 19(6), 1779–1790. https://doi.org/10.1208/s12248-017-0134-0

    Article  CAS  PubMed  Google Scholar 

  364. Zhang, L., Chen, W. X., Li, L. L., Cao, Y. Z., Geng, Y. D., Feng, X. J., et al. (2020). Paeonol suppresses proliferation and motility of non-small-cell lung cancer cells by disrupting STAT3/NF-κB signaling. Front Pharmacology, 11, 572616. https://doi.org/10.3389/fphar.2020.572616

    Article  CAS  Google Scholar 

  365. Zhang, T., Li, S., Li, J., Yin, F., Hua, Y., Wang, Z., et al. (2016). Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Diseases, 7(10), e2421. https://doi.org/10.1038/cddis.2016.305

    Article  CAS  Google Scholar 

  366. Xu, L., Bi, Y., Xu, Y., Zhang, Z., Xu, W., Zhang, S., et al. (2020). Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. Journal of Cellular and Molecular Medicine, 24(8), 4480–4493. https://doi.org/10.1111/jcmm.15106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Chen, K. L., Ye, J. W., Qi, L., Liao, Y., Li, R. F., Song, S. P., et al. (2019). Oridonin inhibits hypoxia-induced epithelial-mesenchymal transition and cell migration by the hypoxia-inducible factor-1 alpha/matrix metallopeptidase-9 signal pathway in gallbladder cancer. Anti-Cancer Drugs, 30(9), 925–932. https://doi.org/10.1097/cad.0000000000000797

    Article  CAS  PubMed  Google Scholar 

  368. Li, C. Y., Wang, Q., Shen, S., Wei, X. L., & Li, G. X. (2018). Oridonin inhibits VEGF-A-associated angiogenesis and epithelial-mesenchymal transition of breast cancer in vitro and in vivo. Oncology Letters, 16(2), 2289–2298. https://doi.org/10.3892/ol.2018.8943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Fakhri, S., Abdian, S., Zarneshan, S. N., Moradi, S. Z., Farzaei, M. H., & Abdollahi, M. (2022). Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. International Journal of Nanomedicine, 17, 299.

    CAS  PubMed  PubMed Central  Google Scholar 

  370. Mondal, A., Gandhi, A., Fimognari, C., Atanasov, A. G., & Bishayee, A. (2019). Alkaloids for cancer prevention and therapy: Current progress and future perspectives. European Journal of Pharmacology, 858, 172472.

    CAS  PubMed  Google Scholar 

  371. Fakhri, S., Piri, S., Moradi, S. Z., & Khan, H. (2022). Phytochemicals targeting oxidative stress, interconnected neuroinflammatory, and neuroapoptotic pathways following radiation. Current Neuropharmacology, 20(5), 836–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  372. Bhanumathi, R., Manivannan, M., Thangaraj, R., & Kannan, S. (2018). Drug-carrying capacity and anticancer effect of the folic acid- and berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega, 3(7), 8317–8328. https://doi.org/10.1021/acsomega.7b01347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Du, H., Gu, J., Peng, Q., Wang, X., Liu, L., Shu, X., et al. (2021). Berberine suppresses EMT in liver and gastric carcinoma cells through combination with TGFβR regulating TGF-β/Smad pathway. Oxidative Medicine and Cellular Longevity, 2021, 2337818. https://doi.org/10.1155/2021/2337818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Chu, S. C., Yu, C. C., Hsu, L. S., Chen, K. S., Su, M. Y., & Chen, P. N. (2014). Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Molecular Pharmacology, 86(6), 609–623. https://doi.org/10.1124/mol.114.094037

    Article  CAS  PubMed  Google Scholar 

  375. Fu, L., Chen, W., Guo, W., Wang, J., Tian, Y., Shi, D., et al. (2013). Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and cytochrome-c/caspase signaling to suppress human cancer cell growth. PloS One, 8(7), e69240. https://doi.org/10.1371/journal.pone.0069240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Qi, H. W., Xin, L. Y., Xu, X., Ji, X. X., & Fan, L. H. (2014). Epithelial-to-mesenchymal transition markers to predict response of Berberine in suppressing lung cancer invasion and metastasis. Journal of Translational Medicine, 12, https://doi.org/10.1186/1479-5876-12-22.

  377. Horak, I., Prylutska, S., Krysiuk, I., Luhovskyi, S., Hrabovsky, O., Tverdokhleb, N., et al. (2021). Nanocomplex of berberine with C(60) fullerene is a potent suppressor of lewis lung carcinoma cells invasion in vitro and metastatic activity in vivo. Materials, 14(20), 6114. https://doi.org/10.3390/ma14206114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Jie, S., Li, H., Tian, Y., Guo, D., Zhu, J., Gao, S., et al. (2011). Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down-regulation in vitro. Journal of Gastroenterology and Hepatology, 26(1), 179–185. https://doi.org/10.1111/j.1440-1746.2010.06389.x

    Article  CAS  PubMed  Google Scholar 

  379. Kim, H. S., Kim, M. J., Kim, E. J., Yang, Y., Lee, M. S., & Lim, J. S. (2012). Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochemical Pharmacology, 83(3), 385–394. https://doi.org/10.1016/j.bcp.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  380. Liu, C. H., Tang, W. C., Sia, P., Huang, C. C., Yang, P. M., Wu, M. H., et al. (2015). Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. International Journal of Medical Sciences, 12(1), 63–71. https://doi.org/10.7150/ijms.9982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Mishra, R., Nathani, S., Varshney, R., Sircar, D., & Roy, P. (2020). Berberine reverses epithelial-mesenchymal transition and modulates histone methylation in osteosarcoma cells. Molecular Biology Reports, 47(11), 8499–8511. https://doi.org/10.1007/s11033-020-05892-8

    Article  CAS  PubMed  Google Scholar 

  382. Naveen, C. R., Gaikwad, S., & Agrawal-Rajput, R. (2016). Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 23(7), 736–744. https://doi.org/10.1016/j.phymed.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  383. Tong, L., Xie, C., Wei, Y., Qu, Y., Liang, H., Zhang, Y., et al. (2019). Antitumor effects of berberine on gliomas via inactivation of caspase-1-mediated IL-1β and IL-18 release. Frontiers in Oncology, 9, 364. https://doi.org/10.3389/fonc.2019.00364

    Article  PubMed  PubMed Central  Google Scholar 

  384. Tsang, C. M., Cheung, K. C., Cheung, Y. C., Man, K., Lui, V. W., Tsao, S. W., et al. (2015). Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma. Biochimica et Biophysica Acta, 1852(3), 541–551. https://doi.org/10.1016/j.bbadis.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  385. Zheng, X., Zhao, Y., Jia, Y., Shao, D., Zhang, F., Sun, M., et al. (2021). Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials, 271, 120716. https://doi.org/10.1016/j.biomaterials.2021.120716

    Article  CAS  PubMed  Google Scholar 

  386. Liu, J., Huang, X., Liu, D., Ji, K., Tao, C., Zhang, R., et al. (2021). Demethyleneberberine induces cell cycle arrest and cellular senescence of NSCLC cells via c-Myc/HIF-1α pathway. Phytomedicine, 91, 153678. https://doi.org/10.1016/j.phymed.2021.153678

    Article  CAS  PubMed  Google Scholar 

  387. Liu, X., Zhang, Y., Zhou, G. J., Hou, Y., Kong, Q., Lu, J. J., et al. (2020). Natural alkaloid 8-oxo-epiberberine inhibited TGF-β1-triggred epithelial-mesenchymal transition by interfering Smad3. Toxicol Applied Pharmacology, 404, 115179. https://doi.org/10.1016/j.taap.2020.115179

    Article  CAS  Google Scholar 

  388. Han, C., Wang, Z., Chen, S., Li, L., Xu, Y., Kang, W., et al. (2021). Berbamine suppresses the progression of bladder cancer by modulating the ROS/NF-κB axis. Oxidative Medicine and Cellular Longevity, 2021, 8851763. https://doi.org/10.1155/2021/8851763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Kim, Y. J., Han, J. M., & Jung, H. J. (2021). Antiangiogenic and antitumor potential of berbamine, a natural CaMKIIγ inhibitor, against glioblastoma. Biochemical and Biophysical Research Communications, 566, 129–134. https://doi.org/10.1016/j.bbrc.2021.06.025

    Article  CAS  PubMed  Google Scholar 

  390. Wang, S., Liu, Q., Zhang, Y., Liu, K., Yu, P., Liu, K., et al. (2009). Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Molecular Cancer, 8, 81. https://doi.org/10.1186/1476-4598-8-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Bouquet, J., Rivaud, M., Chevalley, S., Deharo, E., Jullian, V., & Valentin, A. (2012). Biological activities of nitidine, a potential anti-malarial lead compound. Malaria Journal, 11(1), 67. https://doi.org/10.1186/1475-2875-11-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Cui, Y., Wu, L., Cao, R., Xu, H., Xia, J., Wang, Z. P., et al. (2020). Antitumor functions and mechanisms of nitidine chloride in human cancers. Journal of Cancer, 11(5), 1250.

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Sun, M., Zhang, N., Wang, X., Li, Y., Qi, W., Zhang, H., et al. (2016). Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell and Bioscience, 6, 44. https://doi.org/10.1186/s13578-016-0104-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Chen, J., Wang, J., Lin, L., He, L., Wu, Y., Zhang, L., et al. (2012). Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Molecular Cancer Therapeutics, 11(2), 277–287. https://doi.org/10.1158/1535-7163.Mct-11-0648

    Article  CAS  PubMed  Google Scholar 

  395. Cheng, Z., Guo, Y., Yang, Y., Kan, J., Dai, S., Helian, M., et al. (2016). Nitidine chloride suppresses epithelial-to-mesenchymal transition in osteosarcoma cell migration and invasion through Akt/GSK-3β/Snail signaling pathway. Oncology Reports, 36(2), 1023–1029. https://doi.org/10.3892/or.2016.4846

    Article  CAS  PubMed  Google Scholar 

  396. Jiang, Y., Jiao, Y., Liu, Y., Zhang, M., Wang, Z., Li, Y., et al. (2018). Sinomenine hydrochloride inhibits the metastasis of human glioblastoma cells by suppressing the expression of matrix metalloproteinase-2/-9 and reversing the endogenous and exogenous epithelial-mesenchymal transition. International Journal of Molecular Sciences, 19(3), 844. https://doi.org/10.3390/ijms19030844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Shen, K. H., Hung, J. H., Liao, Y. C., Tsai, S. T., Wu, M. J., & Chen, P. S. (2020). Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs. International Journal of Molecular Sciences, 21(9), 3080. https://doi.org/10.3390/ijms21093080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Xie, T., Ren, H. Y., Lin, H. Q., Mao, J. P., Zhu, T., Wang, S. D., et al. (2016). Sinomenine prevents metastasis of human osteosarcoma cells via S phase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway. International Journal of Oncology, 48(5), 2098–2112. https://doi.org/10.3892/ijo.2016.3416

    Article  CAS  PubMed  Google Scholar 

  399. Zhao, B., Liu, L., Mao, J., Liu, K., Fan, W., Liu, J., et al. (2017). Sinomenine hydrochloride attenuates the proliferation, migration, invasiveness, angiogenesis and epithelial-mesenchymal transition of clear-cell renal cell carcinoma cells via targeting Smad in vitro. Biomedicine and Pharmacotherapy, 96, 1036–1044. https://doi.org/10.1016/j.biopha.2017.11.123

    Article  CAS  PubMed  Google Scholar 

  400. Li, C., Cai, G., Song, D., Gao, R., Teng, P., Zhou, L., et al. (2019). Development of EGFR-targeted evodiamine nanoparticles for the treatment of colorectal cancer. Biomaterials Science, 7(9), 3627–3639. https://doi.org/10.1039/c9bm00613c

    Article  CAS  PubMed  Google Scholar 

  401. Shi, L., Yang, F., Luo, F., Liu, Y., Zhang, F., Zou, M., et al. (2016). Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting β-catenin-mediated angiogenesis. Tumour Biology, 37(9), 12791–12803. https://doi.org/10.1007/s13277-016-5251-3

    Article  CAS  PubMed  Google Scholar 

  402. Zhu, B., Zhao, L., Liu, Y., Jin, Y., Feng, J., Zhao, F., et al. (2019). Induction of phosphatase shatterproof 2 by evodiamine suppresses the proliferation and invasion of human cholangiocarcinoma. International Journal of Biochemistry & Cell Biology, 108, 98–110. https://doi.org/10.1016/j.biocel.2019.01.012

    Article  CAS  Google Scholar 

  403. Zeng, D., Zhou, P., Jiang, R., Li, X. P., Huang, S. Y., Li, D. Y., et al. (2021). Evodiamine inhibits vasculogenic mimicry in HCT116 cells by suppressing hypoxia-inducible factor 1-alpha-mediated angiogenesis. Anti-Cancer Drugs, 32(3), 314–322. https://doi.org/10.1097/cad.0000000000001030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Yuan, X. H., Zhang, P., Yu, T. T., Huang, H. K., Zhang, L. L., Yang, C. M., et al. (2020). Lycorine inhibits tumor growth of human osteosarcoma cells by blocking Wnt/β-catenin, ERK1/2/MAPK and PI3K/AKT signaling pathway. American Journal of Translational Research, 12(9), 5381–5398.

    CAS  PubMed  PubMed Central  Google Scholar 

  405. Sun, Y., Wu, P., Sun, Y., Sharopov, F. S., Yang, Q., Chen, F., et al. (2018). Lycorine possesses notable anticancer potentials in on-small cell lung carcinoma cells via blocking Wnt/β-catenin signaling and epithelial-mesenchymal transition (EMT). Biochemical and Biophysical Research Communications, 495(1), 911–921. https://doi.org/10.1016/j.bbrc.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  406. Shi, S., Li, C., Zhang, Y., Deng, C., Tan, M., Pan, G., et al. (2021). Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21(Cip1/WAF1). American Journal of Cancer Research, 11(4), 1391–1409.

    CAS  PubMed  PubMed Central  Google Scholar 

  407. Zeng, Q., Li, L., Siu, W., Jin, Y., Cao, M., Li, W., et al. (2019). A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomedical Pharmacotherapy, 120, 109370. https://doi.org/10.1016/j.biopha.2019.109370

    Article  CAS  Google Scholar 

  408. Jung, Y. Y., Baek, S. H., Narula, A. S., Namjoshi, O. A., Blough, B. E., & Ahn, K. S. (2021). Potential function of oxymatrine as a novel suppressor of epithelial-to-mesenchymal transition in lung tumor cells. Life Sciences, 284, 11893. https://doi.org/10.1016/j.lfs.2021.119893

    Article  CAS  Google Scholar 

  409. Liang, L., & Huang, J. (2016). Oxymatrine inhibits epithelial-mesenchymal transition through regulation of NF-κB signaling in colorectal cancer cells. Oncology Reports, 36(3), 1333–1338. https://doi.org/10.3892/or.2016.4927

    Article  CAS  PubMed  Google Scholar 

  410. Wang, X., Liu, C., Wang, J., Fan, Y., Wang, Z., & Wang, Y. (2017). Oxymatrine inhibits the migration of human colorectal carcinoma RKO cells via inhibition of PAI-1 and the TGF-β1/Smad signaling pathway. Oncology Reports, 37(2), 747–753. https://doi.org/10.3892/or.2016.5292

    Article  CAS  PubMed  Google Scholar 

  411. Liang, L., Wu, J., Luo, J., Wang, L., Chen, Z. X., Han, C. L., et al. (2020). Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncology Letters, 19(1), 519–526. https://doi.org/10.3892/ol.2019.11090

    Article  CAS  PubMed  Google Scholar 

  412. Xie, W., Zhang, Y., Zhang, S., Wang, F., Zhang, K., Huang, Y., et al. (2019). Oxymatrine enhanced anti-tumor effects of bevacizumab against triple-negative breast cancer via abating Wnt/β-catenin signaling pathway. American Journal of Cancer Research, 9(8), 1796–1814.

    CAS  PubMed  PubMed Central  Google Scholar 

  413. Delaney, L. M., Farias, N., Ghassemi Rad, J., Fernando, W., Annan, H., & Hoskin, D. W. (2021). The natural alkaloid piperlongumine inhibits metastatic activity and epithelial-to-mesenchymal transition of triple-negative mammary carcinoma cells. Nutrition and Cancer, 73(11–12), 2397–2410. https://doi.org/10.1080/01635581.2020.1825755

    Article  CAS  PubMed  Google Scholar 

  414. Golovine, K., Makhov, P., Naito, S., Raiyani, H., Tomaszewski, J., Mehrazin, R., et al. (2015). Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma. Cancer Biology and Therapy, 16(5), 743–749. https://doi.org/10.1080/15384047.2015.1026511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Han, J. G., Gupta, S. C., Prasad, S., & Aggarwal, B. B. (2014). Piperlongumine chemosensitizes tumor cells through interaction with cysteine 179 of IκBα kinase, leading to suppression of NF-κB-regulated gene products. Molecular Cancer Therapeutics, 13(10), 2422–2435. https://doi.org/10.1158/1535-7163.mct-14-0171

    Article  CAS  PubMed  Google Scholar 

  416. Kumar, S., & Agnihotri, N. (2021). Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer. Molecular and Cellular Biochemistry, 476(4), 1765–1781. https://doi.org/10.1007/s11010-020-04044-7

    Article  CAS  PubMed  Google Scholar 

  417. Gao, J., Zhu, H., Wan, H., Zou, X., Ma, X., & Gao, G. (2017). Harmine suppresses the proliferation and migration of human ovarian cancer cells through inhibiting ERK/CREB pathway. Oncology Reports, 38(5), 2927–2934. https://doi.org/10.3892/or.2017.5952

    Article  CAS  PubMed  Google Scholar 

  418. Hamsa, T., & Kuttan, G. (2011). Studies on anti-metastatic and anti-invasive effects of harmine using highly metastatic murine B16F–10 melanoma cells. Journal of Environmental Pathology, Toxicology and Oncology, 30(2), 123–137. https://doi.org/10.1615/jenvironpatholtoxicoloncol.v30.i2.40

    Article  CAS  PubMed  Google Scholar 

  419. Nafie, E., Lolarga, J., Lam, B., Guo, J., Abdollahzadeh, E., Rodriguez, S., et al. (2021). Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1. PloS one, 16(2), e0247652. https://doi.org/10.1371/journal.pone.0247652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Cai, H. R., Huang, X., & Zhang, X. R. (2019). Harmine suppresses bladder tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Bioscience Reports, 39, https://doi.org/10.1042/BSR20190155

  421. Saraswati, S., Alhaider, A. A., & Agrawal, S. S. (2013). Punarnavine, an alkaloid from Boerhaavia diffusa exhibits anti-angiogenic activity via downregulation of VEGF in vitro and in vivo. Chemico-Biological Interactions, 206(2), 204–213. https://doi.org/10.1016/j.cbi.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  422. George Kallivalappil, G., & Kuttan, G. (2019). Efficacy of punarnavine in restraining organ-specific tumour progression in 4T1-induced murine breast tumour model. Inflammopharmacology, 27(4), 701–712. https://doi.org/10.1007/s10787-018-0490-0

    Article  CAS  PubMed  Google Scholar 

  423. Manu, K. A., & Kuttan, G. (2009). Anti-metastatic potential of Punarnavine, an alkaloid from Boerhaavia diffusa Linn. Immunobiology, 214(4), 245–255. https://doi.org/10.1016/j.imbio.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  424. Ghauri, M. A., Su, Q., Ullah, A., Wang, J., Sarwar, A., Wu, Q., et al. (2021). Sanguinarine impedes metastasis and causes inversion of epithelial to mesenchymal transition in breast cancer. Phytomedicine, 84, 153500. https://doi.org/10.1016/j.phymed.2021.153500

    Article  CAS  PubMed  Google Scholar 

  425. Su, Q., Fan, M., Wang, J., Ullah, A., Ghauri, M. A., Dai, B., et al. (2019). Sanguinarine inhibits epithelial-mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death and Disease, 10(12), 939. https://doi.org/10.1038/s41419-019-2173-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Xu, J. Y., Meng, Q. H., Chong, Y., Jiao, Y., Zhao, L., Rosen, E. M., et al. (2013). Sanguinarine is a novel VEGF inhibitor involved in the suppression of angiogenesis and cell migration. Mol Clin Oncol, 1(2), 331–336. https://doi.org/10.3892/mco.2012.41

    Article  PubMed  Google Scholar 

  427. Jiang, F., Chen, Y., Ren, S., Li, Z., Sun, K., Xing, Y., et al. (2020). Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1-AKT/ERK-Snail signaling pathway. International Journal of Oncology, 57(1), 183–196. https://doi.org/10.3892/ijo.2020.5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Zhang, J., Chen, Y., Lin, J., Jia, R., An, T., Dong, T., et al. (2020). Cyclovirobuxine D exerts anticancer effects by suppressing the EGFR-FAK-AKT/ERK1/2-Slug signaling pathway in human hepatocellular carcinoma. DNA and Cell Biology, 39(3), 355–367. https://doi.org/10.1089/dna.2019.4990

    Article  CAS  PubMed  Google Scholar 

  429. Liu, Y., Lv, H., Li, X., Liu, J., Chen, S., Chen, Y., et al. (2021). Cyclovirobuxine inhibits the progression of clear cell renal cell carcinoma by suppressing the IGFBP3-AKT/STAT3/MAPK-Snail signalling pathway. International Journal of Biological Sciences, 17(13), 3522–3537. https://doi.org/10.7150/ijbs.62114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Liu, W., Zhang, B., Chen, G., Wu, W., Zhou, L., Shi, Y., et al. (2017). Targeting miR-21 with sophocarpine inhibits tumor progression and reverses epithelial-mesenchymal transition in head and neck cancer. Molecular Therapy, 25(9), 2129–2139. https://doi.org/10.1016/j.ymthe.2017.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Zhao, Z., Zhang, D., Wu, F., Tu, J., Song, J., Xu, M., et al. (2021). Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression. Journal of Cellular and Molecular Medicine, 25(1), 549–560. https://doi.org/10.1111/jcmm.16108

    Article  CAS  PubMed  Google Scholar 

  432. Sun, Y., Gao, X., Wu, P., Wink, M., Li, J., Dian, L., et al. (2019). Jatrorrhizine inhibits mammary carcinoma cells by targeting TNIK mediated Wnt/β-catenin signalling and epithelial-mesenchymal transition (EMT). Phytomedicine, 63, 153015. https://doi.org/10.1016/j.phymed.2019.153015

    Article  CAS  PubMed  Google Scholar 

  433. Wang, P., Gao, X. Y., Yang, S. Q., Sun, Z. X., Dian, L. L., Qasim, M., et al. (2019). Jatrorrhizine inhibits colorectal carcinoma proliferation and metastasis through Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition. Drug Des Devel Ther, 13, 2235–2247. https://doi.org/10.2147/dddt.S207315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Tae, N., Hung, T. M., Kim, O., Kim, N., Lee, S., Na, S., et al. (2017). A cassaine diterpene alkaloid, 3β-acetyl-nor-erythrophlamide, suppresses VEGF-induced angiogenesis and tumor growth via inhibiting eNOS activation. Oncotarget, 8(54), 92346–92358. https://doi.org/10.18632/oncotarget.21307

    Article  PubMed  PubMed Central  Google Scholar 

  435. Ko, J. H., Yang, M. H., Baek, S. H., Nam, D., Jung, S. H., & Ahn, K. S. (2019). Theacrine attenuates epithelial mesenchymal transition in human breast cancer MDA-MB-231 cells. Phytotherapy Research, 33(7), 1934–1942. https://doi.org/10.1002/ptr.6389

    Article  CAS  PubMed  Google Scholar 

  436. Zhang, Y., Liu, W., He, W., Zhang, Y., Deng, X., Ma, Y., et al. (2016). Tetrandrine reverses epithelial-mesenchymal transition in bladder cancer by downregulating Gli-1. International Journal of Oncology, 48(5), 2035–2042. https://doi.org/10.3892/ijo.2016.3415

    Article  CAS  PubMed  Google Scholar 

  437. Zhang, Z., Liu, T., Yu, M., Li, K., & Li, W. (2018). The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. Journal of Experimental and Clinical Cancer Research, 37(1), 7. https://doi.org/10.1186/s13046-018-0678-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Feng, H. T., Zhao, W. W., Lu, J. J., Wang, Y. T., & Chen, X. P. (2017). Hypaconitine inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses adhesion, migration, and invasion of lung cancer A549 cells. Chinese Journal of Natural Medicines, 15(6), 427–435. https://doi.org/10.1016/s1875-5364(17)30064-x

    Article  CAS  PubMed  Google Scholar 

  439. Wang, X., Lin, Y., & Zheng, Y. (2020). Antitumor effects of aconitine in A2780 cells via estrogen receptor β-mediated apoptosis, DNA damage and migration. Molecular Medicine Reports, 22(3), 2318–2328. https://doi.org/10.3892/mmr.2020.11322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Chen, X., & Yan, N. (2021). Stachydrine inhibits TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma cells through the TGF-β/Smad and PI3K/Akt/mTOR signaling pathways. Anti-Cancer Drugs, 32(8), 786–792. https://doi.org/10.1097/cad.0000000000001066

    Article  CAS  PubMed  Google Scholar 

  441. Munakarmi, S., Shrestha, J., Shin, H. B., Lee, G. H., & Jeong, Y. J. (2021). 3,3′-Diindolylmethane suppresses the growth of hepatocellular carcinoma by regulating its invasion, migration, and ER stress-mediated mitochondrial apoptosis. Cells, 10(5), 1178. https://doi.org/10.3390/cells10051178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Nandi, D., Cheema, P. S., Singal, A., Bharti, H., & Nag, A. (2021). Artemisinin mediates its tumor-suppressive activity in hepatocellular carcinoma through targeted inhibition of FoxM1. Front Oncology, 11, 751271. https://doi.org/10.3389/fonc.2021.751271

    Article  CAS  Google Scholar 

  443. Tiwari, A., Modi, S. J., Gabhe, S. Y., & Kulkarni, V. M. (2021). Evaluation of piperine against cancer stem cells (CSCs) of hepatocellular carcinoma: Insights into epithelial-mesenchymal transition (EMT). Bioorganic Chemistry, 110, 104776. https://doi.org/10.1016/j.bioorg.2021.104776

    Article  CAS  PubMed  Google Scholar 

  444. Dai, M., Chen, N., Li, J., Tan, L., Li, X., Wen, J., et al. (2021). In vitro and in vivo anti-metastatic effect of the alkaliod matrine from Sophora flavecens on hepatocellular carcinoma and its mechanisms. Phytomedicine, 87, 153580. https://doi.org/10.1016/j.phymed.2021.153580

    Article  CAS  PubMed  Google Scholar 

  445. Wang, Y., Zhang, S., Liu, J., Fang, B., Yao, J., & Cheng, B. (2018). Matrine inhibits the invasive and migratory properties of human hepatocellular carcinoma by regulating epithelial-mesenchymal transition. Molecular Medicine Reports, 18(1), 911–919. https://doi.org/10.3892/mmr.2018.9023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Xie, X., Zhu, H., Zhang, J., Wang, M., Zhu, L., Guo, Z., et al. (2017). Solamargine inhibits the migration and invasion of HepG2 cells by blocking epithelial-to-mesenchymal transition. Oncology Letters, 14(1), 447–452. https://doi.org/10.3892/ol.2017.6147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. Chen, Y. D., Cai, F. Y., Mao, Y. Z., Yang, Y. S., Xu, K., Liu, X. F., et al. (2021). The anti-neoplastic activities of aloperine in HeLa cervical cancer cells are associated with inhibition of the IL-6-JAK1-STAT3 feedback loop. Chinese Journal of Natural Medicines, 19(11), 815–824. https://doi.org/10.1016/s1875-5364(21)60106-1

    Article  CAS  PubMed  Google Scholar 

  448. Rovini, A., Gauthier, G., Bergès, R., Kruczynski, A., Braguer, D., & Honoré, S. (2013). Anti-migratory effect of vinflunine in endothelial and glioblastoma cells is associated with changes in EB1 C-terminal detyrosinated/tyrosinated status. PloS One, 8(6), e65694. https://doi.org/10.1371/journal.pone.0065694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Smith, B. A., Neal, C. L., Chetram, M., Vo, B., Mezencev, R., Hinton, C., et al. (2013). The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. Journal of Natural Medicines, 67(3), 607–618. https://doi.org/10.1007/s11418-012-0722-3

    Article  CAS  PubMed  Google Scholar 

  450. Zhang, Q. B., Ye, R. F., Ye, L. Y., Zhang, Q. Y., & Dai, N. G. (2020). Isocorydine decrease gemcitabine-resistance by inhibiting epithelial-mesenchymal transition via STAT3 in pancreatic cancer cells. America Journal Translation Research, 12(7), 3702–3714.

    CAS  Google Scholar 

  451. Hu, H., Dong, Z., Wang, X., Bai, L., Lei, Q., Yang, J., et al. (2019). Dehydrocorydaline inhibits cell proliferation, migration and invasion via suppressing MEK1/2-ERK1/2 cascade in melanoma. Oncotargets and Therapy, 12, 5163–5175. https://doi.org/10.2147/ott.S183558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Khumkhrong, P., Piboonprai, K., Chaichompoo, W., Pimtong, W., Khongkow, M., Namdee, K., et al. (2019). Crinamine induces apoptosis and inhibits proliferation, migration, and angiogenesis in cervical cancer SiHa cells. Biomolecules, 9(9), 494. https://doi.org/10.3390/biom9090494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  453. Ma, J., Wang, L., Li, J., Zhang, G., Tao, H., Li, X., et al. (2018). Swainsonine inhibits invasion and the EMT process in esophageal carcinoma cells by targeting Twist1. Oncology Research, 26(8), 1207–1213. https://doi.org/10.3727/096504017x15046134836575

    Article  PubMed  PubMed Central  Google Scholar 

  454. Rajendran, P., Ben Ammar, R., Al-Saeedi, F. J., Elsayed Mohamed, M., Islam, M., & Al-Ramadan, S. Y. (2020). Thidiazuron decreases epithelial-mesenchymal transition activity through the NF-kB and PI3K/AKT signalling pathways in breast cancer. Journal of Cellular and Molecular Medicine, 24(24), 14525–14538. https://doi.org/10.1111/jcmm.16079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Ramu, A. K., Ali, D., Alarifi, S., Syed Abuthakir, M. H., & Ahmed Abdul, B. A. (2021). Reserpine inhibits DNA repair, cell proliferation, invasion and induces apoptosis in oral carcinogenesis via modulation of TGF-β signaling. Life Sciences, 264, 118730. https://doi.org/10.1016/j.lfs.2020.118730

    Article  CAS  PubMed  Google Scholar 

  456. Saraswati, S., Kanaujia, P. K., Kumar, S., Kumar, R., & Alhaider, A. A. (2013). Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Molecular Cancer, 12, 82. https://doi.org/10.1186/1476-4598-12-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Wang, J., Dong, Y., & Li, Q. (2020). Neferine induces mitochondrial dysfunction to exert anti-proliferative and anti-invasive activities on retinoblastoma. Experimental Biology and Medicine, 245(15), 1385–1394. https://doi.org/10.1177/1535370220928933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Deng, G. L., Zeng, S., Ma, J. L., Zhang, Y., Qu, Y. L., Han, Y., et al. (2017). The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma. Scientific Reports, 7, https://doi.org/10.1038/srep41616.

  459. Wang, J. Y., Wang, Z., Li, M. Y., Zhang, Z., Mi, C., Zuo, H. X., et al. (2018). Dictamnine promotes apoptosis and inhibits epithelial-mesenchymal transition, migration, invasion and proliferation by downregulating the HIF-1α and Slug signaling pathways. Chemico-Biological Interactions, 296, 134–144. https://doi.org/10.1016/j.cbi.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  460. Wang, Y., Shang, G., Wang, W., Qiu, E., Pei, Y., & Zhang, X. (2020). Magnoflorine inhibits the malignant phenotypes and increases cisplatin sensitivity of osteosarcoma cells via regulating miR-410–3p/HMGB1/NF-κB pathway. Life Science, 256, 117967. https://doi.org/10.1016/j.lfs.2020.117967

    Article  CAS  Google Scholar 

  461. Chiang, C., Zhang, M., Wang, D., Xiao, T., Zhu, L., Chen, K., et al. (2020). Therapeutic potential of targeting MKK3-p38 axis with capsaicin for nasopharyngeal carcinoma. Theranostics, 10(17), 7906–7920. https://doi.org/10.7150/thno.45191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Wutka, A., Palagani, V., Barat, S., Chen, X., El Khatib, M., Götze, J., et al. (2014). Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PloS One, 9(4), e95605. https://doi.org/10.1371/journal.pone.0095605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Yodkeeree, S., Pompimon, W., & Limtrakul, P. (2014). Crebanine, an aporphine alkaloid, sensitizes TNF-α-induced apoptosis and suppressed invasion of human lung adenocarcinoma cells A549 by blocking NF-κB-regulated gene products. Tumour Biology, 35(9), 8615–8624. https://doi.org/10.1007/s13277-014-1998-6

    Article  CAS  PubMed  Google Scholar 

  464. Thoppil, R. J., & Bishayee, A. (2011). Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World Journal of Hepatology, 3(9), 228.

    PubMed  PubMed Central  Google Scholar 

  465. Rabi, T., & Bishayee, A. (2009). Terpenoids and breast cancer chemoprevention. Breast Cancer Research and Treatment, 115(2), 223–239.

    CAS  PubMed  Google Scholar 

  466. Fakhri, S., Nouri, Z., Moradi, S. Z., & Farzaei, M. H. (2020). Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytotherapy Research, 34(11), 2790–2792. https://doi.org/10.1002/ptr.6797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  467. Lee, D. E., Jang, E. H., Bang, C., Kim, G. L., Yoon, S. Y., Lee, D. H., et al. (2021). Bakuchiol, main component of root bark of Ulmus davidiana var japonica, inhibits TGF-β-induced in vitro EMT and in vivo metastasis. Archives of Biochemistry and Biophysics, 709, 108969. https://doi.org/10.1016/j.abb.2021.108969

    Article  CAS  PubMed  Google Scholar 

  468. Zeng, Q., Che, Y., Zhang, Y., Chen, M., Guo, Q., & Zhang, W. (2020). Thymol isolated from Thymus vulgaris L. inhibits colorectal cancer cell growth and metastasis by suppressing the Wnt/β-catenin pathway. Drug Design Development Therapy, 14, 2535–2547. https://doi.org/10.2147/dddt.S254218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  469. Liu, Y. R., Cai, Q. Y., Gao, Y. G., Luan, X., Guan, Y. Y., Lu, Q., et al. (2018). Alantolactone, a sesquiterpene lactone, inhibits breast cancer growth by antiangiogenic activity via blocking VEGFR2 signaling. Phytotherapy Research, 32(4), 643–650. https://doi.org/10.1002/ptr.6004

    Article  CAS  PubMed  Google Scholar 

  470. Naderi Alizadeh, M., Rashidi, M., Muhammadnejad, A., Moeini Zanjani, T., & Ziai, S. A. (2018). Antitumor effects of umbelliprenin in a mouse model of colorectal cancer. Iran Journal Pharmacology Research, 17(3), 976–985.

    Google Scholar 

  471. Boldbaatar, A., Lee, S., Han, S., Jeong, A. L., Ka, H. I., Buyanravjikh, S., et al. (2017). Eupatolide inhibits the TGF-β1-induced migration of breast cancer cells via downregulation of SMAD3 phosphorylation and transcriptional repression of ALK5. Oncology Letters, 14(5), 6031–6039. https://doi.org/10.3892/ol.2017.6957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. Ma, J. H., Qi, J., Liu, F. Y., Lin, S. Q., Zhang, C. Y., Xie, W. D., et al. (2018). Ivalin inhibits proliferation, migration and invasion by suppressing epithelial mesenchymal transition in breast cancer cells. Nutrition and Cancer, 70(8), 1330–1338. https://doi.org/10.1080/01635581.2018.1539185

    Article  CAS  PubMed  Google Scholar 

  473. Fu, J., Ke, X., Tan, S., Liu, T., Wang, S., Ma, J., et al. (2016). The natural compound codonolactone attenuates TGF-β1-mediated epithelial-to-mesenchymal transition and motility of breast cancer cells. Oncology Reports, 35(1), 117–126. https://doi.org/10.3892/or.2015.4394

    Article  CAS  PubMed  Google Scholar 

  474. Liang, N., Li, Y., & Chung, H. Y. (2017). Two natural eudesmane-type sesquiterpenes from Laggera alata inhibit angiogenesis and suppress breast cancer cell migration through VEGF- and angiopoietin 2-mediated signaling pathways. International Journal of Oncology, 51(1), 213–222. https://doi.org/10.3892/ijo.2017.4004

    Article  CAS  PubMed  Google Scholar 

  475. Tian, B., Xiao, Y., Ma, J., Ou, W., Wang, H., Wu, J., et al. (2020). Parthenolide inhibits angiogenesis in esophageal squamous cell carcinoma through suppression of VEGF. Oncotargets and Therapy, 13, 7447–7458. https://doi.org/10.2147/ott.S256291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  476. Cvetanova, B., Li, M. Y., Yang, C. C., Hsiao, P. W., Yang, Y. C., Feng, J. H., et al. (2021). Sesquiterpene lactone deoxyelephantopin isolated from Elephantopus scaber and its derivative DETD-35 suppress BRAF(V600E) mutant melanoma lung metastasis in mice. International Journal of Molecular Sciences, 22(6), 3226. https://doi.org/10.3390/ijms22063226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Bian, Y., Yin, G., Wang, G., Liu, T. T., Liang, L., Yang, X. Y., et al. Degradation of HIF-1 alpha induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells. Cell Biology and Toxicology, https://doi.org/10.1007/s10565-021-09681-2.

  478. Huang, Y., Wu, S., Zhang, Y., Wang, L., & Guo, Y. (2018). Antitumor effect of triptolide in T-cell lymphoblastic lymphoma by inhibiting cell viability, invasion, and epithelial-mesenchymal transition via regulating the PI3K/AKT/mTOR pathway. Oncotargets and Therapy, 11, 769–779. https://doi.org/10.2147/ott.S149788

    Article  PubMed  PubMed Central  Google Scholar 

  479. Zhu, W., Ou, Y., Li, Y., Xiao, R., Shu, M., Zhou, Y., et al. (2009). A small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid carcinoma cells via down-regulation of the nuclear factor-kappa B pathway. Molecular Pharmacology, 75(4), 812–819. https://doi.org/10.1124/mol.108.052605

    Article  CAS  PubMed  Google Scholar 

  480. Acikgoz, E., Tatar, C., & Oktem, G. (2020). Triptolide inhibits CD133(+) /CD44(+) colon cancer stem cell growth and migration through triggering apoptosis and represses epithelial-mesenchymal transition via downregulating expressions of snail, slug, and twist. Journal of Cellular Biochemistry, 121(5–6), 3313–3324. https://doi.org/10.1002/jcb.29602

    Article  CAS  PubMed  Google Scholar 

  481. Johnson, S. M., Wang, X., & Evers, B. M. (2011). Triptolide inhibits proliferation and migration of colon cancer cells by inhibition of cell cycle regulators and cytokine receptors. Journal of Surgical Research, 168(2), 197–205. https://doi.org/10.1016/j.jss.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  482. Zhang, M., Meng, M., Liu, Y., Qi, J., Zhao, Z., Qiao, Y., et al. (2021). Triptonide effectively inhibits triple-negative breast cancer metastasis through concurrent degradation of Twist1 and Notch1 oncoproteins. Breast Cancer Research, 23(1), 116. https://doi.org/10.1186/s13058-021-01488-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  483. Liu, X., Xu, J., Zhou, J., & Shen, Q. (2021). Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes and Diseases, 8(4), 448–462. https://doi.org/10.1016/j.gendis.2020.06.010

    Article  CAS  PubMed  Google Scholar 

  484. Kashyap, A., Umar, S. M., Dev, J. R. A., & Prasad, C. P. (2021). Dihydrotanshinone-I modulates epithelial mesenchymal transition (EMT) thereby impairing migration and clonogenicity of triple negative breast cancer cells. Asian Pacific Journal Cancer Prevention, 22(7), 2177–2184.

    CAS  Google Scholar 

  485. Shi, L., Zhang, G., Zheng, Z., Lu, B., & Ji, L. (2017). Andrographolide reduced VEGFA expression in hepatoma cancer cells by inactivating HIF-1α: The involvement of JNK and MTA1/HDCA. Chemico-Biological Interactions, 273, 228–236. https://doi.org/10.1016/j.cbi.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  486. Zhou, X., Yue, G. G., Liu, M., Zuo, Z., Lee, J. K., Li, M., et al. (2016). Eriocalyxin B, a natural diterpenoid, inhibited VEGF-induced angiogenesis and diminished angiogenesis-dependent breast tumor growth by suppressing VEGFR-2 signaling. Oncotarget, 7(50), 82820–82835. https://doi.org/10.18632/oncotarget.12652

    Article  PubMed  PubMed Central  Google Scholar 

  487. Li, X. Y., Zhao, X. Z., Song, W., Tian, Z. B., Yang, L., Niu, Q. H., et al. (2018). Pseudolaric Acid B inhibits proliferation, invasion and epithelial-to-mesenchymal transition in human pancreatic cancer cell. Yonsei Medical Journal, 59(1), 20–27. https://doi.org/10.3349/ymj.2018.59.1.20

    Article  CAS  PubMed  Google Scholar 

  488. Li, C., Guo, X. D., Lei, M., Wu, J. Y., Jin, J. Z., Shi, X. F., et al. (2017). Thamnolia vermicularis extract improves learning ability in APP/PS1 transgenic mice by ameliorating both Aβ and Tau pathologies. Acta Pharmacologica Sinica, 38(1), 9–28. https://doi.org/10.1038/aps.2016.94

    Article  CAS  PubMed  Google Scholar 

  489. Fatima, I., El-Ayachi, I., Taotao, L., Lillo, M. A., Krutilina, R. I., Seagroves, T. N., et al. (2017). The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PloS One, 12(12), e0189864. https://doi.org/10.1371/journal.pone.0189864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  490. Garg, G., Khandelwal, A., & Blagg, B. S. J. (2016). Chapter three - Anticancer inhibitors of Hsp90 function: Beyond the usual suspects. In J. Isaacs & L. Whitesell (Eds.), Advances in cancer research 129 (pp. 51–88). Academic Press.

    Google Scholar 

  491. Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Mukherjee, T., & Bishayee, A. (2018). Molecular targets of celastrol in cancer: Recent trends and advancements. Critical Reviews in Oncology/Hematology, 128, 70–81. https://doi.org/10.1016/j.critrevonc.2018.05.019

    Article  PubMed  Google Scholar 

  492. Sethi, G., Ahn, K. S., Pandey, M. K., & Aggarwal, B. B. (2007). Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood, 109(7), 2727–2735. https://doi.org/10.1182/blood-2006-10-050807

    Article  CAS  PubMed  Google Scholar 

  493. Kuchta, K., Xiang, Y., Huang, S., Tang, Y., Peng, X., Wang, X., et al. (2017). Celastrol, an active constituent of the TCM plant Tripterygium wilfordii Hook.f., inhibits prostate cancer bone metastasis. Prostate Cancer Prostatic Disease, 20(2), 156–164. https://doi.org/10.1038/pcan.2016.61

    Article  CAS  Google Scholar 

  494. Sinha, S., Khan, S., Shukla, S., Lakra, A. D., Kumar, S., Das, G., et al. (2016). Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. International Journal of Biochemistry and Cell Biology, 77(Pt A), 41–56. https://doi.org/10.1016/j.biocel.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  495. Shukla, S., Sinha, S., Khan, S., Kumar, S., Singh, K., Mitra, K., et al. (2016). Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Science and Reports, 6, 21860. https://doi.org/10.1038/srep21860

    Article  CAS  Google Scholar 

  496. Wang, Y., Xu, S., Wu, Y., & Zhang, J. (2016). Cucurbitacin E inhibits osteosarcoma cells proliferation and invasion through attenuation of PI3K/AKT/mTOR signalling pathway. Biosci Rep, 36(6), https://doi.org/10.1042/BSR20160165

  497. Dong, Y., Lu, B., Zhang, X., Zhang, J., Lai, L., Li, D., et al. (2010). Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis, 31(12), 2097–2104. https://doi.org/10.1093/carcin/bgq167

    Article  CAS  PubMed  Google Scholar 

  498. Zarneshan, S. N., Fakhri, S., & Khan, H. (2022). Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacological Research, 177, 106099.

    CAS  PubMed  Google Scholar 

  499. Liu, T., Zhao, L., Zhang, Y., Chen, W., Liu, D., Hou, H., et al. (2014). Ginsenoside 20(S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PloS One, 9(9), e103887. https://doi.org/10.1371/journal.pone.0103887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Mao, X., Jin, Y., Feng, T., Wang, H., Liu, D., Zhou, Z., et al. (2020). Ginsenoside Rg3 inhibits the growth of osteosarcoma and attenuates metastasis through the Wnt/β-catenin and EMT signaling pathway. Evidence Based Complement Alternative Medicine, 2020, 6065124. https://doi.org/10.1155/2020/6065124

    Article  Google Scholar 

  501. Kim, Y. J., Choi, W. I., Jeon, B. N., Choi, K. C., Kim, K., Kim, T. J., et al. (2014). Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology, 322, 23–33. https://doi.org/10.1016/j.tox.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  502. Tian, L. L., Shen, D. C., Li, X. D., Shan, X., Wang, X. Q., Yan, Q., et al. (2016). Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget, 7(2), 1619–1632. https://doi.org/10.18632/oncotarget.6451

    Article  PubMed  Google Scholar 

  503. Liu, D., Liu, T., Teng, Y., Chen, W., Zhao, L., & Li, X. (2017). Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25. Experimental and Therapeutic Medicine, 14(4), 2895–2902. https://doi.org/10.3892/etm.2017.4889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. Sun, M., Zhuang, X., Lv, G., Lin, Z., Huang, X., Zhao, J., et al. (2021). Ginsenoside CK inhibits TGF-β- induced epithelial-mesenchymal transition in A549 cell via SIRT1. BioMedicine Research International, 2021, 9140191. https://doi.org/10.1155/2021/9140191

    Article  CAS  Google Scholar 

  505. Wang, W., Zhang, X., Qin, J. J., Voruganti, S., Nag, S. A., Wang, M. H., et al. (2012). Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2. PloS One, 7(7), e41586. https://doi.org/10.1371/journal.pone.0041586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  506. Nagini, S., Nivetha, R., Palrasu, M., & Mishra, R. (2021). Nimbolide, a neem limonoid, is a promising candidate for the anticancer drug arsenal. Journal of Medicinal Chemistry, 64(7), 3560–3577.

    CAS  PubMed  Google Scholar 

  507. Žiberna, L., Šamec, D., Mocan, A., Nabavi, S. F., Bishayee, A., Farooqi, A. A., et al. (2017). Oleanolic acid alters multiple cell signaling pathways: Implication in cancer prevention and therapy. International Journal of Molecular Sciences, 18(3), 643.

    PubMed  PubMed Central  Google Scholar 

  508. Prasad, S., Yadav, V. R., Sung, B., Reuter, S., Kannappan, R., Deorukhkar, A., et al. (2012). Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: Chemosensitization with capecitabine. Clinical Cancer Research, 18(18), 4942–4953. https://doi.org/10.1158/1078-0432.Ccr-11-2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Zhang, J., Wang, W., Qian, L., Zhang, Q., Lai, D., & Qi, C. (2015). Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition. Oncology Reports, 34(5), 2375–2384. https://doi.org/10.3892/or.2015.4213

    Article  CAS  PubMed  Google Scholar 

  510. Huang, C. Y., Lin, C. Y., Tsai, C. W., & Yin, M. C. (2011). Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicology in Vitro, 25(7), 1274–1280. https://doi.org/10.1016/j.tiv.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  511. Lúcio, K. A., Rocha Gda, G., Monção-Ribeiro, L. C., Fernandes, J., Takiya, C. M., & Gattass, C. R. (2011). Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PloS One, 6(12), e28596. https://doi.org/10.1371/journal.pone.0028596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  512. Subramani, R., Gonzalez, E., Arumugam, A., Nandy, S., Gonzalez, V., Medel, J., et al. (2016). Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Science and Reports, 6, 19819. https://doi.org/10.1038/srep19819

    Article  CAS  Google Scholar 

  513. Babykutty, S., PS, P., RJ, N., Kumar, M. S., Nair, M. S., Srinivas, P., Gopala, S., et al. (2012). Nimbolide retards tumor cell migration, invasion, and angiogenesis by downregulating MMP-2/9 expression via inhibiting ERK1/2 and reducing DNA-binding activity of NF-κB in colon cancer cells. Molecular Carcinog, 51(6), 475–490. https://doi.org/10.1002/mc.20812

    Article  CAS  Google Scholar 

  514. Li, C., Yang, Z., Zhai, C., Qiu, W., Li, D., Yi, Z., et al. (2010). Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor alpha by inhibiting NF-kappaB signaling pathway. Molecular Cancer, 9, 73. https://doi.org/10.1186/1476-4598-9-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  515. Liu, W., Wang, Y., Chen, J., Lin, Z., Lin, M., Lin, X., et al. (2021). Beneficial effects of gracillin from rhizoma paridis against gastric carcinoma via the potential TIPE2-mediated induction of endogenous apoptosis and inhibition of migration in BGC823 cells. Frontiers Pharmacology, 12, 669199. https://doi.org/10.3389/fphar.2021.669199

    Article  CAS  Google Scholar 

  516. Chen, J., Jiao, D. M., Li, Y., Jiang, C. Y., Tang, X. L., Song, J., et al. (2019). Mogroside V inhibits hyperglycemia-induced lung cancer cells metastasis through reversing EMT and damaging cytoskeleton. Current Cancer Drug Targets, 19(11), 885–895. https://doi.org/10.2174/1568009619666190619154240

    Article  CAS  PubMed  Google Scholar 

  517. Huang, H., Nie, C., Qin, X., Zhou, J., & Zhang, L. (2019). Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncology Letters, 18(4), 4278–4287. https://doi.org/10.3892/ol.2019.10780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  518. Austin, P., Freeman, S. A., Gray, C. A., Gold, M. R., Vogl, A. W., Andersen, R. J., et al. (2013). The invasion inhibitor sarasinoside A1 reverses mesenchymal tumor transformation in an E-cadherin-independent manner. Molecular Cancer Research, 11(5), 530–540. https://doi.org/10.1158/1541-7786.Mcr-12-0385

    Article  CAS  PubMed  Google Scholar 

  519. Pei, Z., Fu, W., & Wang, G. (2017). A natural product toosendanin inhibits epithelial-mesenchymal transition and tumor growth in pancreatic cancer via deactivating Akt/mTOR signaling. Biochemical and Biophysical Research Communications, 493(1), 455–460. https://doi.org/10.1016/j.bbrc.2017.08.170

    Article  CAS  PubMed  Google Scholar 

  520. Guan, Y. Y., Liu, H. J., Luan, X., Xu, J. R., Lu, Q., Liu, Y. R., et al. (2015). Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colorectal tumor by inhibiting VEGFR2 signaling. Phytomedicine, 22(1), 103–110. https://doi.org/10.1016/j.phymed.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  521. Roy, G., Guan, S., Liu, H., & Zhang, L. (2019). Rotundic acid induces DNA damage and cell death in hepatocellular carcinoma through AKT/mTOR and MAPK pathways. Frontiers in Oncology, 9, 545. https://doi.org/10.3389/fonc.2019.00545

    Article  PubMed  PubMed Central  Google Scholar 

  522. Fu, J., Wang, S., Lu, H., Ma, J., Ke, X., Liu, T., et al. (2015). In vitro inhibitory effects of terpenoids from Chloranthus multistachys on epithelial-mesenchymal transition via down-regulation of Runx2 activation in human breast cancer. Phytomedicine, 22(1), 165–172. https://doi.org/10.1016/j.phymed.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  523. Subramani, R., Gonzalez, E., Nandy, S. B., Arumugam, A., Camacho, F., Medel, J., et al. (2017). Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget, 8(7), 10891–10904. https://doi.org/10.18632/oncotarget.8055

    Article  PubMed  Google Scholar 

  524. Venditti, A., & Bianco, A. (2020). Sulfur-containing secondary metabolites as neuroprotective agents. Current medicinal chemistry, 27(26), 4421–4436.

    CAS  PubMed  Google Scholar 

  525. Abdalla, M. A., & Mühling, K. H. (2019). Plant-derived sulfur containing natural products produced as a response to biotic and abiotic stresses: A review of their structural diversity and medicinal importance. Journal Applied Botanical Food Quality, 92, 204–215.

    CAS  Google Scholar 

  526. Bahrin, L. G., Apostu, M. O., Birsa, L. M., & Stefan, M. (2014). The antibacterial properties of sulfur containing flavonoids. Bioorganic and Medicinal Chemistry Letters, 24(10), 2315–2318. https://doi.org/10.1016/j.bmcl.2014.03.071

    Article  CAS  PubMed  Google Scholar 

  527. Burow, M., Wittstock, U., & Gershenzon, J. (2008). Sulfur-containing secondary metabolites and their role in plant defense. In Sulfur metabolism in phototrophic organisms (pp. 201–222). Springer: Dordrecht, The Netherlands.

  528. Juge, N., Mithen, R., & Traka, M. (2007). Molecular basis for chemoprevention by sulforaphane: A comprehensive review. Cellular and Molecular Life Sciences, 64(9), 1105–1127.

    CAS  PubMed  Google Scholar 

  529. Kaiser, A. E., Baniasadi, M., Giansiracusa, D., Giansiracusa, M., Garcia, M., Fryda, Z., et al. (2021). Sulforaphane: A broccoli bioactive phytocompound with cancer preventive potential. Cancers, 13(19), 4796.

    CAS  PubMed  PubMed Central  Google Scholar 

  530. Schepici, G., Bramanti, P., & Mazzon, E. (2020). Efficacy of sulforaphane in neurodegenerative diseases. International Journal of Molecular Sciences, 21(22), 8637.

    CAS  PubMed  PubMed Central  Google Scholar 

  531. Bagheri, M., Fazli, M., & Ahmadiankia, N. (2018). Study the effect of sulforaphane on the expression of cxcr4 and snail in breast cancer cells. Journal of Knowledge and Health in Basic Medical Sciences, 13(3), 8–13. https://doi.org/10.22100/jkh.v13i3.1953

    Article  CAS  Google Scholar 

  532. Kim, D. H., Sung, B., Kang, Y. J., Hwang, S. Y., Kim, M. J., Yoon, J. H., et al. (2015). Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells. International Journal of Oncology, 47(6), 2226–2232. https://doi.org/10.3892/ijo.2015.3200

    Article  CAS  PubMed  Google Scholar 

  533. Tafakh, M. S., Saidijam, M., Ranjbarnejad, T., Malih, S., Mirzamohammadi, S., & Najafi, R. (2018). Sulforaphane, a chemopreventive compound, inhibits cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression in human HT-29 colon cancer cells. Cells, Tissues, Organs, 206(1–2), 46–53. https://doi.org/10.1159/000490394

    Article  CAS  PubMed  Google Scholar 

  534. Wang, D. X., Zou, Y. J., Zhuang, X. B., Chen, S. X., Lin, Y., Li, W. L., et al. (2017). Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways. Acta Pharmacologica Sinica, 38(2), 241–251. https://doi.org/10.1038/aps.2016.122

    Article  CAS  PubMed  Google Scholar 

  535. Fakhri, S., Moradi, S. Z., Yarmohammadi, A., Narimani, F., Wallace, C. E., & Bishayee, A. (2022). Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy. In Frontiers in oncology, 2022.https://doi.org/10.3389/fonc.2022.834072.

  536. Hong, D., Jang, S. Y., Jang, E. H., Jung, B., Cho, I. H., Park, M. J., et al. (2015). Shikonin as an inhibitor of the LPS-induced epithelial-to-mesenchymal transition in human breast cancer cells. International Journal of Molecular Medicine, 36(6), 1601–1606. https://doi.org/10.3892/ijmm.2015.2373

    Article  CAS  PubMed  Google Scholar 

  537. Chen, Y., Chen, Z. Y., Chen, L., Zhang, J. Y., Fu, L. Y., Tao, L., et al. (2019). Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3 beta-regulated suppression of beta-catenin signaling. Biochemical Pharmacology, 166, 33–45. https://doi.org/10.1016/j.bcp.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  538. Lee, H. J., Lee, H. J., Magesh, V., Nam, D., Lee, E. O., Ahn, K. S., et al. (2008). Shikonin, acetylshikonin, and isobutyroylshikonin inhibit VEGF-induced angiogenesis and suppress tumor growth in lewis lung carcinoma-bearing mice. Yakugaku Zasshi, 128(11), 1681–1688. https://doi.org/10.1248/yakushi.128.1681

    Article  CAS  PubMed  Google Scholar 

  539. Hsieh, Y. S., Liao, C. H., Chen, W. S., Pai, J. T., & Weng, M. S. (2017). Shikonin inhibited migration and invasion of human lung cancer cells via suppression of c-Met-mediated epithelial-to-mesenchymal transition. Journal of Cellular Biochemistry, 118(12), 4639–4651. https://doi.org/10.1002/jcb.26128

    Article  CAS  PubMed  Google Scholar 

  540. Pan, T., Zhang, F., Li, F., Gao, X., Li, Z., Li, X., et al. (2020). Shikonin blocks human lung adenocarcinoma cell migration and invasion in the inflammatory microenvironment via the IL-6/STAT3 signaling pathway. Oncology Reports, 44(3), 1049–1063. https://doi.org/10.3892/or.2020.7683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  541. Shilnikova, K., Piao, M. J., Kang, K. A., Fernando, P., Herath, H., Cho, S. J., et al. (2021). Natural compound shikonin induces apoptosis and attenuates epithelial to mesenchymal transition in radiation-resistant human colon cancer cells. Biomol Ther. https://doi.org/10.4062/biomolther.2021.088

    Article  Google Scholar 

  542. Shanmugam, M. K., Arfuso, F., Kumar, A. P., Wang, L., Goh, B. C., Ahn, K. S., et al. (2018). Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacological Research, 129, 357–364.

    CAS  PubMed  Google Scholar 

  543. Sajadimajd, S., Moradi, S. Z., Akbari, V., Aghaz, F., & Farzaei, M. H. (2022). Chapter 13 - Nanoformulated herbal bioactives for the treatment of neurodegenerative disorders. In I. S. Bakshi, R. Bala, R. Madaan, & R. K. Sindhu (Eds.), Herbal bioactive-based drug delivery systems (pp. 371–391). Academic Press.

    Google Scholar 

  544. Lee, S. R., Mun, J. Y., Jeong, M. S., Lee, H. H., Roh, Y. G., Kim, W. T., et al. (2019). Thymoquinone-induced tristetraprolin inhibits tumor growth and metastasis through destabilization of MUC4 mRNA. International Journal of Molecular Sciences, 20(11), 2614. https://doi.org/10.3390/ijms20112614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  545. Li, J., Khan, M. A., Wei, C., Cheng, J., Chen, H., Yang, L., et al. (2017). Thymoquinone inhibits the migration and invasive characteristics of cervical cancer cells SiHa and CaSki in vitro by targeting epithelial to mesenchymal transition associated transcription factors Twist1 and Zeb1. Molecules, 22(12), 2105. https://doi.org/10.3390/molecules22122105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  546. Ünal, T. D., Hamurcu, Z., Delibaşı, N., Çınar, V., Güler, A., Gökçe, S., et al. (2021). Thymoquinone inhibits proliferation and migration of MDA-MB-231 triple negative breast cancer cells by suppressing autophagy, beclin-1 and LC3. Anti-Cancer Agents in Medicinal Chemistry, 21(3), 355–364. https://doi.org/10.2174/1871520620666200807221047

    Article  CAS  PubMed  Google Scholar 

  547. Yi, T., Cho, S. G., Yi, Z., Pang, X., Rodriguez, M., Wang, Y., et al. (2008). Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Molecular Cancer Therapeutics, 7(7), 1789–1796. https://doi.org/10.1158/1535-7163.Mct-08-0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  548. Kaschula, C. H., Tuveri, R., Ngarande, E., Dzobo, K., Barnett, C., Kusza, D. A., et al. (2019). The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer, 19(1), 248. https://doi.org/10.1186/s12885-019-5388-8

    Article  PubMed  PubMed Central  Google Scholar 

  549. Mohammadi-Motlagh, H. R., Shokohinia, Y., Mojarrab, M., Rasouli, H., & Mostafaie, A. (2017). 2-Methylpyridine-1-ium-1-sulfonate from Allium hirtifolium: An anti-angiogenic compound which inhibits growth of MCF-7 and MDA-MB-231 cells through cell cycle arrest and apoptosis induction. Biomedicine and Pharmacotherapy, 93, 117–129. https://doi.org/10.1016/j.biopha.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  550. Roy, A. (2021). Plumbagin: A potential anti-cancer compound. Mini Reviews in Medicinal Chemistry, 21(6), 731–737.

    CAS  PubMed  Google Scholar 

  551. Yin, Z., Zhang, J., Chen, L., Guo, Q., Yang, B., Zhang, W., et al. (2020). Anticancer effects and mechanisms of action of plumbagin: Review of research advances. BioMed Research International, 6940953. https://doi.org/10.1155/2020/6940953

  552. Hafeez, B. B., Fischer, J. W., Singh, A., Zhong, W., Mustafa, A., Meske, L., et al. (2015). Plumbagin inhibits prostate carcinogenesis in intact and castrated PTEN knockout mice via targeting PKCε, Stat3, and epithelial-to-mesenchymal transition markers. Cancer Prevention Research, 8(5), 375–386. https://doi.org/10.1158/1940-6207.CAPR-14-0231

    Article  CAS  PubMed  Google Scholar 

  553. Hafeez, B. B., Zhong, W., Fischer, J. W., Mustafa, A., Shi, X., Meske, L., et al. (2013). Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model. Molecular Oncology, 7(3), 428–439. https://doi.org/10.1016/j.molonc.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  554. Pan, S. T., Qin, Y., Zhou, Z. W., He, Z. X., Zhang, X., Yang, T., et al. (2015). Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells. Drug Design, Development and Therapy, 9, 5511–5551. https://doi.org/10.2147/DDDT.S89621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  555. Sandur, S. K., Ichikawa, H., Sethi, G., Ahn, K. S., & Aggarwal, B. B. (2006). Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. Journal of Biological Chemistry, 281(25), 17023–17033. https://doi.org/10.1074/jbc.M601595200

    Article  CAS  PubMed  Google Scholar 

  556. Zhang, R., Wang, Z., You, W., Zhou, F., Guo, Z., Qian, K., et al. (2020). Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT. Cancer Cell International, 20, 520. https://doi.org/10.1186/s12935-020-01607-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  557. Bai, Z., Yao, C., Zhu, J., Xie, Y., Ye, X.-Y., Bai, R., et al. (2021). Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms and structural modification. Molecules, 26(6), 1499.

    CAS  PubMed  PubMed Central  Google Scholar 

  558. Lu, J.-J., Dang, Y.-Y., Huang, M., Xu, W.-S., Chen, X.-P., & Wang, Y.-T. (2012). Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae – A review. Journal of Ethnopharmacology, 143(2), 406–411. https://doi.org/10.1016/j.jep.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  559. Zhai, B., Zhang, N., Han, X., Li, Q., Zhang, M., Chen, X., et al. (2019). Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomedicine and Pharmacotherapy, 114, 108812. https://doi.org/10.1016/j.biopha.2019.108812

    Article  CAS  PubMed  Google Scholar 

  560. Zhao, L., Wei, J., Wang, S., Lang, T., Shi, X., Shan, Z., et al. (2020). Beta-elemene inhibits differentiated thyroid carcinoma metastasis by reducing cellular proliferation, metabolism and invasion ability. Annals Translational Medicine, 8(19), 1232.

    CAS  Google Scholar 

  561. Zhang, X., Li, Y., Zhang, Y., Song, J., Wang, Q., Zheng, L., et al. (2013). Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors. PloS One, 8(3), e58719. https://doi.org/10.1371/journal.pone.0058719

    Article  PubMed  PubMed Central  Google Scholar 

  562. Cheng, H., Ge, X., Zhuo, S., Gao, Y., Zhu, B., Zhang, J., et al. (2018). β-elemene synergizes with gefitinib to inhibit stem-like phenotypes and progression of lung cancer via down-regulating EZH2. Frontiers in Pharmacology, 9, 1413. https://doi.org/10.3389/fphar.2018.01413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  563. Chen, P., Li, X., Zhang, R., Liu, S., Xiang, Y., Zhang, M., et al. (2020). Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics, 10(11), 5107–5119. https://doi.org/10.7150/thno.44705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  564. Wen, Y. C., Lee, W. J., Tan, P., Yang, S. F., Hsiao, M., Lee, L. M., et al. (2015). By inhibiting snail signaling and miR-23a-3p, osthole suppresses the EMT-mediated metastatic ability in prostate cancer. Oncotarget, 6(25), 21120–21136.

    PubMed  PubMed Central  Google Scholar 

  565. Lin, Y. C., Lin, J. C., Hung, C. M., Chen, Y., Liu, L. C., Chang, T. C., et al. (2014). Osthole inhibits insulin-like growth factor-1-induced epithelial to mesenchymal transition via the inhibition of PI3K/Akt signaling pathway in human brain cancer cells. Journal of Agricultural and Food Chemistry, 62(22), 5061–5071. https://doi.org/10.1021/jf501047g

    Article  CAS  PubMed  Google Scholar 

  566. Feng, H., Lu, J. J., Wang, Y., Pei, L., & Chen, X. (2017). Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adhesion and Migration, 11(5–6), 464–475. https://doi.org/10.1080/19336918.2016.1259058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  567. Shokoohinia, Y., Jafari, F., Mohammadi, Z., Bazvandi, L., Hosseinzadeh, L., Chow, N., et al. (2018). Potential anticancer properties of osthol: A comprehensive mechanistic review. Nutrients, 10(1), 36. https://doi.org/10.3390/nu10010036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  568. Thaiparambil, J. T., Bender, L., Ganesh, T., Kline, E., Patel, P., Liu, Y., et al. (2011). Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. International Journal of Cancer, 129(11), 2744–2755. https://doi.org/10.1002/ijc.25938

    Article  CAS  PubMed  Google Scholar 

  569. Lee, J., Hahm, E. R., Marcus, A. I., & Singh, S. V. (2015). Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Molecular Carcinogenesis, 54(6), 417–429. https://doi.org/10.1002/mc.22110

    Article  CAS  PubMed  Google Scholar 

  570. Kyakulaga, A. H., Aqil, F., Munagala, R., & Gupta, R. C. (2018). Withaferin A inhibits epithelial to mesenchymal transition in non-small cell lung cancer cells. Science and Reports, 8(1), 15737. https://doi.org/10.1038/s41598-018-34018-1

    Article  CAS  Google Scholar 

  571. Xue, X., Sun, D. F., Sun, C. C., Liu, H. P., Yue, B., Zhao, C. R., et al. (2012). Inhibitory effect of riccardin D on growth of human non-small cell lung cancer: In vitro and in vivo studies. Lung Cancer, 76(3), 300–308. https://doi.org/10.1016/j.lungcan.2011.12.013

    Article  PubMed  Google Scholar 

  572. Sun, C. C., Zhang, Y. S., Xue, X., Cheng, Y. N., Liu, H. P., Zhao, C. R., et al. (2011). Inhibition of angiogenesis involves in anticancer activity of riccardin D, a macrocyclic bisbibenzyl, in human lung carcinoma. European Journal of Pharmacology, 667(1–3), 136–143. https://doi.org/10.1016/j.ejphar.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  573. Unahabhokha, T., Chanvorachote, P., Sritularak, B., Kitsongsermthon, J., & Pongrakhananon, V. (2016). Gigantol inhibits epithelial to mesenchymal process in human lung cancer cells. Evidence-based Complementary and Alternative Medicine, 2016, 1–10. https://doi.org/10.1155/2016/4561674

    Article  Google Scholar 

  574. Unahabhokha, T., Chanvorachote, P., & Pongrakhananon, V. (2016). The attenuation of epithelial to mesenchymal transition and induction of anoikis by gigantol in human lung cancer H460 cells. Tumor Biology, 37(7), 8633–8641. https://doi.org/10.1007/s13277-015-4717-z

    Article  CAS  PubMed  Google Scholar 

  575. Hu, C., Jiang, R., Cheng, Z., Lu, Y., Gu, L., Li, H., et al. (2019). Ophiopogonin-B suppresses epithelial-mesenchymal transition in human lung adenocarcinoma cells via the Linc00668/miR-432-5p/EMT axis. Journal of Cancer, 10(13), 2849–2856. https://doi.org/10.7150/jca.31338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  576. Chen, M., Cheng, H. U., Yuanyuan, G. U. O., Jiang, R., Jiang, H., Zhou, Y., et al. (2018). Ophiopogonin B suppresses the metastasis and angiogenesis of A549 cells in vitro and in vivo by inhibiting the EphA2/Akt signaling pathway. Oncology Reports, 40(3), 1339–1347. https://doi.org/10.3892/or.2018.6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  577. Lim, W. C., Kim, H., & Ko, H. (2019). Delphinidin inhibits epidermal growth factor-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma cells. Journal of Cellular Biochemistry, 120(6), 9887–9899. https://doi.org/10.1002/jcb.28271

    Article  CAS  PubMed  Google Scholar 

  578. Kim, M. H., Jeong, Y. J., Choi, H. J., Hoe, H. S., Park, K. K., Park, Y. Y., et al. (2017). Delphinidin inhibits angiogenesis through the suppression of HIF-1 alpha and VEGF expression in A549 lung cancer cells. Oncology Reports, 37(2), 777–784. https://doi.org/10.3892/or.2016.5296

    Article  CAS  PubMed  Google Scholar 

  579. Ko, J. H., Nam, D., Um, J. Y., Jung, S. H., Sethi, G., & Ahn, K. S. (2018). Bergamottin suppresses metastasis of lung cancer cells through abrogation of diverse oncogenic signaling cascades and epithelial-to-mesenchymal transition. Molecules, 23(7), 1601. https://doi.org/10.3390/molecules23071601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  580. Sanookpan, K., Nonpanya, N., Sritularak, B., & Chanvorachote, P. (2021). Ovalitenone inhibits the migration of lung cancer cells via the suppression of AKT/mTOR and epithelial-to-mesenchymal transition. Molecules, 26(3), 638. https://doi.org/10.3390/molecules26030638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  581. Zhao, L., Liu, S. Z., Che, X. F., Hou, K. Z., Ma, Y. J., Li, C., et al. (2015). Bufalin inhibits TGF-beta-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-beta receptors. International Journal of Molecular Medicine, 36(3), 645–652. https://doi.org/10.3892/ijmm.2015.2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  582. Lee, J. H., Lee, D. H., Lee, H. S., Choi, J. S., Kim, K. W., & Hong, S. S. (2008). Deguelin inhibits human hepatocellular carcinoma by antiangiogenesis and apoptosis. Oncology Reports, 20(1), 129–134.

    CAS  PubMed  Google Scholar 

  583. Hu, J., Ye, H., Fu, A., Chen, X., Wang, Y., Chen, X., et al. (2010). Deguelin–an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model. International Journal of Cancer, 127(10), 2455–2466. https://doi.org/10.1002/ijc.25253

    Article  CAS  PubMed  Google Scholar 

  584. Boreddy, S. R., & Srivastava, S. K. (2013). Deguelin suppresses pancreatic tumor growth and metastasis by inhibiting epithelial-to-mesenchymal transition in an orthotopic model. Oncogene, 32(34), 3980–3991. https://doi.org/10.1038/onc.2012.413

    Article  CAS  PubMed  Google Scholar 

  585. Zhao, Z., Sun, Y. S., Chen, W., Lv, L. X., & Li, Y. Q. (2016). Hispolon inhibits breast cancer cell migration by reversal of epithelial-to-mesenchymal transition via suppressing the ROS/ERK/Slug/E-cadherin pathway. Oncology Reports, 35(2), 896–904. https://doi.org/10.3892/or.2015.4445

    Article  CAS  PubMed  Google Scholar 

  586. Yang, S., Sun, S., Xu, W., Yu, B., Wang, G., & Wang, H. (2020). Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Molecular Medicine Reports, 21(4), 1819–1832. https://doi.org/10.3892/mmr.2020.10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  587. Shi, J., Li, J., Li, J., Li, R., Wu, X., Gao, F., et al. (2021). Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor. Phytomedicine, 81, 153408. https://doi.org/10.1016/j.phymed.2020.153408

    Article  CAS  PubMed  Google Scholar 

  588. Luo, C., Wang, Y., Wei, C., Chen, Y., & Ji, Z. (2020). The anti-migration and anti-invasion effects of Bruceine D in human triple-negative breast cancer MDA-MB-231 cells. Experimental and Therapeutic Medicine, 19(1), 273–279. https://doi.org/10.3892/etm.2019.8187

    Article  CAS  PubMed  Google Scholar 

  589. Luo, C., Fang, S. P., Wang, Y., Wei, C., Chen, Y. X., & Ji, Z. N. (2019). Bruceine D suppresses viability, metastasis and EMT of human breast cancer MDA-MB-231 cells. International Journal of Clinical and Experimental Medicine, 12(6), 7285–7291.

    CAS  Google Scholar 

  590. Lee, H., Ko, J. H., Baek, S. H., Nam, D., Lee, S. G., Lee, J., et al. (2016). Embelin inhibits invasion and migration of MDA-MB-231 breast cancer cells by suppression of CXC chemokine receptor 4, matrix metalloproteinases-9/2, and epithelial-mesenchymal transition. Phytotherapy Research, 30(6), 1021–1032. https://doi.org/10.1002/ptr.5612

    Article  CAS  PubMed  Google Scholar 

  591. Go, R. E., Kim, C. W., Jeon, S. Y., Byun, Y. S., Jeung, E. B., Nam, K. H., et al. (2017). Fludioxonil induced the cancer growth and metastasis via altering epithelial–mesenchymal transition via an estrogen receptor-dependent pathway in cellular and xenografted breast cancer models. Environmental Toxicology, 32(4), 1439–1454. https://doi.org/10.1002/tox.22337

    Article  CAS  PubMed  Google Scholar 

  592. Jo, M. J., Kim, B. G., Kim, W. Y., Lee, D. H., Yun, H. K., Jeong, S., et al. (2021). Cannabidiol suppresses angiogenesis and stemness of breast cancer cells by downregulation of hypoxia-inducible factors-1 alpha. Cancers, 13(22), 5667. https://doi.org/10.3390/cancers13225667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  593. Sathya, S., Sudhagar, S., Vidhya Priya, M., Bharathi Raja, R., Muthusamy, V. S., Niranjali Devaraj, S., et al. (2010). 3β-hydroxylup-20(29)-ene-27,28-dioic acid dimethyl ester, a novel natural product from Plumbago zeylanica inhibits the proliferation and migration of MDA-MB-231 cells. Chemico-Biological Interactions, 188(3), 412–420. https://doi.org/10.1016/j.cbi.2010.07.019

    Article  CAS  PubMed  Google Scholar 

  594. Sinha, N., Meher, B. R., Naik, P. P., Panda, P. K., Mukhapadhyay, S., Maiti, T. K., et al. (2019). p73 induction by Abrus agglutinin facilitates Snail ubiquitination to inhibit epithelial to mesenchymal transition in oral cancer. Phytomedicine, 55, 179–190. https://doi.org/10.1016/j.phymed.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  595. Seo, J., Ha, J., Kang, E., Yoon, H., Lee, S., Ryu, S. Y., et al. (2021). Anti-cancer effects of glaucarubinone in the hepatocellular carcinoma cell line Huh7 via regulation of the epithelial-to-mesenchymal transition-associated transcription factor Twist1. Int J Mol Sci, 22(4), https://doi.org/10.3390/ijms22041700.

  596. Saraswati, S., Kumar, S., & Alhaider, A. A. (2013). α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway. Molecular Cancer, 12, 147. https://doi.org/10.1186/1476-4598-12-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  597. Zheng, W. P., Huang, F. Y., Dai, S. Z., Wang, J. Y., Lin, Y. Y., Sun, Y., et al. (2020). Toxicarioside O inhibits cell proliferation and epithelial-mesenchymal transition by downregulation of Trop2 in lung cancer cells. Frontiers Oncology, 10, 609275. https://doi.org/10.3389/fonc.2020.609275

    Article  Google Scholar 

  598. Petpiroon, N., Sritularak, B., & Chanvorachote, P. (2017). Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3. BMC complementary and alternative medicine, 17(1),https://doi.org/10.1186/s12906-017-2059-7.

  599. Nonpanya, N., Sanookpan, K., Joyjamras, K., Wichadakul, D., Sritularak, B., Chaotham, C., et al. (2021). Norcycloartocarpin targets Akt and suppresses Akt-dependent survival and epithelial-mesenchymal transition in lung cancer cells. PloS One, 16(8), e0254929. https://doi.org/10.1371/journal.pone.0254929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  600. Ni, L., Li, Z., Shi, X., Yao, C., Sun, J., Ai, M., et al. (2020). Rosthorin A inhibits non-small cell lung cancer cell growth and metastasis through repressing epithelial-mesenchymal transition via downregulating Slug. Anti-Cancer Drugs, 31(10), 997–1003. https://doi.org/10.1097/CAD.0000000000000973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  601. Kim, J. H., Kim, M. S., Lee, B. H., Kim, J. K., Ahn, E. K., Ko, H. J., et al. (2017). Marmesin-mediated suppression of VEGF/VEGFR and integrin β1 expression: Its implication in non-small cell lung cancer cell responses and tumor angiogenesis. Oncology Reports, 37(1), 91–97. https://doi.org/10.3892/or.2016.5245

    Article  PubMed  Google Scholar 

  602. Chao, W., Deng, J. S., Li, P. Y., Liang, Y. C., & Huang, G. J. (2017). 3,4-Dihydroxybenzalactone suppresses human non-small cell lung carcinoma cells metastasis via suppression of epithelial to mesenchymal transition, ROS-Mediated PI3K/AKT/MAPK/MMP & NF-B signaling pathways. Molecules, 22(4), 537. https://doi.org/10.3390/molecules22040537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  603. Pengpaeng, P., Sritularak, B., & Chanvorachote, P. (2015). Dendrofalconerol a suppresses migrating cancer cells via EMT and integrin proteins. Anticancer Research, 35(1), 201–206.

    CAS  PubMed  Google Scholar 

  604. Pang, X., Yi, Z., Zhang, X., Sung, B., Qu, W., Lian, X., et al. (2009). Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Research, 69(14), 5893–5900. https://doi.org/10.1158/0008-5472.Can-09-0755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  605. Bi, S., Liu, J. R., Li, Y., Wang, Q., Liu, H. K., Yan, Y. G., et al. (2010). gamma-Tocotrienol modulates the paracrine secretion of VEGF induced by cobalt(II) chloride via ERK signaling pathway in gastric adenocarcinoma SGC-7901 cell line. Toxicology, 274(1–3), 27–33. https://doi.org/10.1016/j.tox.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  606. Zheng, L., Li, D., Xiang, X., Tong, L., Qi, M., Pu, J., et al. (2013). Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14. BMC Cancer, 13, 74. https://doi.org/10.1186/1471-2407-13-74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  607. Zhang, X., Zheng, L., Sun, Y., Wang, T., & Wang, B. (2015). Tangeretin enhances radiosensitivity and inhibits the radiation-induced epithelial-mesenchymal transition of gastric cancer cells. Oncology Reports, 34(1), 302–310. https://doi.org/10.3892/or.2015.3982

    Article  CAS  PubMed  Google Scholar 

  608. Arivazhagan, L., & Sorimuthu Pillai, S. (2014). Tangeretin, a citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7,12-dimethylbenz(α)anthracene-induced rat mammary carcinoma. Journal of Nutritional Biochemistry, 25(11), 1140–1153. https://doi.org/10.1016/j.jnutbio.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  609. Chen, C., Ma, T., Zhang, C., Zhang, H., Bai, L., Kong, L., et al. (2017). Down-regulation of aquaporin 5-mediated epithelial-mesenchymal transition and anti-metastatic effect by natural product Cairicoside E in colorectal cancer. Molecular Carcinogenesis, 56(12), 2692–2705. https://doi.org/10.1002/mc.22712

    Article  CAS  PubMed  Google Scholar 

  610. Auyeung, K. K., Law, P. C., & Ko, J. K. (2012). Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncology Reports, 28(6), 2188–2194. https://doi.org/10.3892/or.2012.2056

    Article  CAS  PubMed  Google Scholar 

  611. Kim, E. S., Hong, S. Y., Lee, H. K., Kim, S. W., An, M. J., Kim, T. I., et al. (2008). Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells. Oncology Reports, 20(6), 1321–1327.

    CAS  PubMed  Google Scholar 

  612. Fang, F., Chen, S., Ma, J., Cui, J., Li, Q., Meng, G., et al. (2018). Juglone suppresses epithelial-mesenchymal transition in prostate cancer cells via the protein kinase B/glycogen synthase kinase-3β/Snail signaling pathway. Oncology Letters, 16(2), 2579–2584. https://doi.org/10.3892/ol.2018.8885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  613. Ding, H., Yu, X., & Yan, Z. (2022). Ailanthone suppresses the activity of human colorectal cancer cells through the STAT3 signaling pathway. Int J Mol Med, 49(2), https://doi.org/10.3892/ijmm.2021.5076.

  614. Zhang, L., Zhou, J., Qin, X., Huang, H., & Nie, C. (2019). Astragaloside IV inhibits the invasion and metastasis of SiHa cervical cancer cells via the TGF-β1-mediated PI3K and MAPK pathways. Oncology Reports, 41(5), 2975–2986. https://doi.org/10.3892/or.2019.7062

    Article  CAS  PubMed  Google Scholar 

  615. Xu, Q., Ma, J., Lei, J., Duan, W., Sheng, L., Chen, X., et al. (2014). α-Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3K/Akt pathway. Biomedicine Research International, 2014, 546353. https://doi.org/10.1155/2014/546353

    Article  CAS  Google Scholar 

  616. Yan, L., Yu, H. H., Liu, Y. S., Wang, Y. S., & Zhao, W. H. (2019). Esculetin enhances the inhibitory effect of 5-Fluorouracil on the proliferation, migration and epithelial-mesenchymal transition of colorectal cancer. Cancer Biomarkers, 24(2), 231–240. https://doi.org/10.3233/cbm-181764

    Article  CAS  PubMed  Google Scholar 

  617. Kim, W. K., Byun, W. S., Chung, H. J., Oh, J., Park, H. J., Choi, J. S., et al. (2018). Esculetin suppresses tumor growth and metastasis by targeting Axin2/E-cadherin axis in colorectal cancer. Biochemical Pharmacology, 152, 71–83. https://doi.org/10.1016/j.bcp.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  618. Zhang, J., Zhao, R., Xing, D., Cao, J., Guo, Y., Li, L., et al. (2020). Magnesium isoglycyrrhizinate induces an inhibitory effect on progression and epithelial-mesenchymal transition of laryngeal cancer via the NF-κB/Twist signaling. Drug Design Development Therapy, 14, 5633–5644. https://doi.org/10.2147/dddt.s272323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  619. Teixeira, M. P., Passos, E. F., Haddad, N. F., Andrade, M. N., Rumjanek, V. M., Miranda-Alves, L., et al. (2021). In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. Environmental Toxicology, 36(7), 1338–1348. https://doi.org/10.1002/tox.23130

    Article  CAS  PubMed  Google Scholar 

  620. Luan, Y., Liu, J., Liu, X., Xue, X., Kong, F., Sun, C., et al. (2016). Tetramethypyrazine inhibits renal cell carcinoma cells through inhibition of NKG2D signaling pathways. International Journal of Oncology, 49(4), 1704–1712. https://doi.org/10.3892/ijo.2016.3670

    Article  CAS  PubMed  Google Scholar 

  621. Kim, Y. J., Jeon, Y., Kim, T., Lim, W. C., Ham, J., Park, Y. N., et al. (2017). Combined treatment with zingerone and its novel derivative synergistically inhibits TGF-β1 induced epithelial-mesenchymal transition, migration and invasion of human hepatocellular carcinoma cells. Bioorganic and Medicinal Chemistry Letters, 27(4), 1081–1088. https://doi.org/10.1016/j.bmcl.2016.12.042

    Article  CAS  PubMed  Google Scholar 

  622. Chen, D., Chen, T., Guo, Y., Wang, C., Dong, L., & Lu, C. (2020). Platycodin D (PD) regulates LncRNA-XIST/miR-335 axis to slow down bladder cancer progression in vitro and in vivo. Experimental Cell Research, 396(1), 112281. https://doi.org/10.1016/j.yexcr.2020.112281

    Article  CAS  PubMed  Google Scholar 

  623. Wang, J., Ma, Y., Yang, J., Jin, L., Gao, Z., Xue, L., et al. (2019). Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. Journal of Cellular and Molecular Medicine, 23(3), 2219–2229. https://doi.org/10.1111/jcmm.14151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  624. Lin, Y., Qi, X., Liu, H., Xue, K., Xu, S., & Tian, Z. (2020). The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell International, 20(1), 1–14.

    CAS  Google Scholar 

  625. Chen, M. C., Hsu, W. L., Hwang, P. A., & Chou, T. C. (2015). Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of HIF-1/VEGF signaling under hypoxia. Marine Drugs, 13(7), 4436–4451. https://doi.org/10.3390/md13074436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  626. Huang, T. H., Chiu, Y. H., Chan, Y. L., Chiu, Y. H., Wang, H., Huang, K. C., et al. (2015). Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Marine Drugs, 13(4), 1882–1900. https://doi.org/10.3390/md13041882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  627. Zhang, X., Wang, J. F., Yang, Y. H., Chang, Y. G., & Xue, C. H. (2011). Anti-metastasis effect of SC-FUC on spontaneous metastasis of mouse Lewis lung carcinoma and its mechanism. Chinese Pharmacological Bulletin, 27(8), 1098–1103. https://doi.org/10.3969/j.issn.1001-1978.2011.08.016

    Article  CAS  Google Scholar 

  628. Teng, H., Yang, Y., Wei, H., Liu, Z., Liu, Z., Ma, Y., et al. (2015). Fucoidan suppresses hypoxia-induced lymphangiogenesis and lymphatic metastasis in mouse hepatocarcinoma. Marine Drugs, 13(6), 3514–3530. https://doi.org/10.3390/md13063514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  629. Hsu, H. Y., Lin, T. Y., Hwang, P. A., Tseng, L. M., Chen, R. H., Tsao, S. M., et al. (2013). Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGF beta receptor degradation in breast cancer. Carcinogenesis, 34(4), 874–884. https://doi.org/10.1093/carcin/bgs396

    Article  CAS  PubMed  Google Scholar 

  630. Oliveira, C., Granja, S., Neves, N. M., Reis, R. L., Baltazar, F., Silva, T. H., et al. (2019). Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydrate Polymer, 223, 115034. https://doi.org/10.1016/j.carbpol.2019.115034

    Article  CAS  Google Scholar 

  631. Rui, X., Pan, H. F., Shao, S. L., & Xu, X. M. (2017). Anti-tumor and anti-angiogenic effects of Fucoidan on prostate cancer: Possible JAK-STAT3 pathway. BMC Complementary and Alternative Medicine, 17(1), 378. https://doi.org/10.1186/s12906-017-1885-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  632. Liu, X., Liu, Y., Hao, J., Zhao, X., Lang, Y., Fan, F., et al. (2016). In Vivo anti-cancer mechanism of low-molecular-weight fucosylated chondroitin sulfate (LFCS) from sea cucumber Cucumaria frondosa. Molecules, 21(5), 625. https://doi.org/10.3390/molecules21050625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  633. He, M., Wang, J., Hu, S., Wang, Y., Xue, C., & Li, H. (2014). The effects of fucosylated chondroitin sulfate isolated from Isostichopus badionotus on antimetastatic activity via down-regulation of Hif-1α and Hpa. Food Science and Biotechnology, 23(5), 1643–1651. https://doi.org/10.1007/s10068-014-0224-z

    Article  CAS  Google Scholar 

  634. Ru, R., Guo, Y., Mao, J., Yu, Z., Huang, W., Cao, X., et al. (2022). Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug. Nutrients, 14(4), 786.

    CAS  PubMed  PubMed Central  Google Scholar 

  635. Tong, Y., Zhang, X., Tian, F., Yi, Y., Xu, Q., Li, L., et al. (2005). Philinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. International Journal of Cancer, 114(6), 843–853. https://doi.org/10.1002/ijc.20804

    Article  CAS  PubMed  Google Scholar 

  636. Tian, F., Zhang, X., Tong, Y., Yi, Y., Zhang, S., Li, L., et al. (2005). PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biology and Therapy, 4(8), 874–882. https://doi.org/10.4161/cbt.4.8.1917

    Article  CAS  PubMed  Google Scholar 

  637. Tian, F., Zhu, C. H., Zhang, X. W., Xie, X., Xin, X. L., Yi, Y. H., et al. (2007). Philinopside E, a new sulfated saponin from sea cucumber, blocks the interaction between kinase insert domain-containing receptor (KDR) and αvβ3 integrin via binding to the extracellular domain of KDR. Molecular Pharmacology, 72(3), 545–552. https://doi.org/10.1124/mol.107.036350

    Article  CAS  PubMed  Google Scholar 

  638. Zhou, J., You, W., Sun, G., Li, Y., Chen, B., Ai, J., et al. (2016). The marine-derived oligosaccharide sulfate MS80, a novel transforming growth factor β1 inhibitor, reverses epithelial mesenchymal transition induced by transforming growth factor-β1 and suppresses tumor metastasis. Journal of Pharmacology and Experimental Therapeutics, 359(1), 54–61. https://doi.org/10.1124/jpet.116.234799

    Article  CAS  PubMed  Google Scholar 

  639. de Camargo, M. R., Frazon, T. F., Inacio, K. K., Smiderle, F. R., Amôr, N. G., Dionísio, T. J., et al. (2021). Ganoderma lucidum polysaccharides inhibit in vitro tumorigenesis, cancer stem cell properties and epithelial-mesenchymal transition in oral squamous cell carcinoma. Journal Ethnopharmacology, 286, 114891. https://doi.org/10.1016/j.jep.2021.114891

    Article  CAS  PubMed  Google Scholar 

  640. Zhao, Q., Xue, C. H., Yang, Y. C., Dong, P., Wang, Y. M., & Wang, J. F. (2011). Echinoside A, A triterpene glycoside derived from sea cucumber, on anti-tumer metastasis via regulation of MMP-9 signal pathway. Huadong Ligong Daxue Xuebao/Journal of East China University of Science and Technology, 37(4), 444–452.

    CAS  Google Scholar 

  641. Zhao, Q., Liu, Z. D., Xue, Y., Wang, J. F., Li, H., Tang, Q. J., et al. (2011). Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions. Journal of Zhejiang University: Science B, 12(7), 534–544. https://doi.org/10.1631/jzus.B1000217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  642. Assawasuparerk, K., Rawangchue, T., & Phonarknguen, R. (2016). Scabraside D derived from sea cucumber induces apoptosis and inhibits metastasis via iNOS and STAT-3 expression in human cholangiocarcinoma xenografts. Asian Pacific Journal of Cancer Prevention, 17(4), 2151–2157. https://doi.org/10.7314/APJCP.2016.17.4.2151

    Article  PubMed  Google Scholar 

  643. Yasman, S., Yanuar, A., Tamimi, Z., & Rezi Riadhi, S. (2020). In silico analysis of sea cucumber bioactive compounds as anti-breast cancer mechanism using autodock vina. Iranian Journal of Pharmaceutical Sciences, 16(1), 1–8. https://doi.org/10.22034/IJPS.2019.91745.1467

    Article  Google Scholar 

  644. Lichota, A., & Gwozdzinski, K. (2018). Anticancer activity of natural compounds from plant and marine environment. International Journal of Molecular Sciences, 19(11), 3533.

    PubMed  PubMed Central  Google Scholar 

  645. Wu, Y. J., Lin, S. H., Din, Z. H., Su, J. H., & Liu, C. I. (2019). Sinulariolide inhibits gastric cancer cell migration and invasion through downregulation of the EMT process and suppression of FAK/PI3K/AKT/mTOR and MAPKs signaling pathways. Marine Drugs, 17(12), 668. https://doi.org/10.3390/md17120668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  646. Ko, C. Y., Shih, P. C., Huang, P. W., Lee, Y. H., Chen, Y. F., Tai, M. H., et al. (2021). Sinularin, an anti-cancer agent causing mitochondria-modulated apoptosis and cytoskeleton disruption in human hepatocellular carcinoma. International Journal of Molecular Sciences, 22(8), 3946. https://doi.org/10.3390/ijms22083946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  647. Wu, Y. J., Wei, W. C., Dai, G. F., Su, J. H., Tseng, Y. H., & Tsai, T. C. (2020). Exploring the mechanism of flaccidoxide-13-acetate in suppressing cell metastasis of hepatocellular carcinoma. Marine Drugs, 18(6), 314. https://doi.org/10.3390/md18060314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  648. Shin, Y., Kim, G. D., Jeon, J. E., Shin, J., & Lee, S. K. (2013). Antimetastatic effect of halichondramide, a trisoxazole macrolide from the marine sponge Chondrosia corticata, on human prostate cancer cells via modulation of epithelial-to-mesenchymal transition. Marine Drugs, 11(7), 2472–2485. https://doi.org/10.3390/md11072472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  649. Liu, R., Liu, Y., Zhou, Y.-D., & Nagle, D. G. (2007). Molecular-targeted antitumor agents. 15. Neolamellarins from the marine sponge Dendrilla nigra inhibit hypoxia-inducible factor-1 activation and secreted vascular endothelial growth factor production in breast tumor cells. Journal of Natural Products, 70(11), 1741–1745.

    CAS  PubMed  PubMed Central  Google Scholar 

  650. Dai, J., Fishback, J. A., Zhou, Y.-D., & Nagle, D. G. (2006). Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells. Journal of Natural Products, 69(12), 1715–1720.

    CAS  PubMed  PubMed Central  Google Scholar 

  651. Sharma, S., Guru, S. K., Manda, S., Kumar, A., Mintoo, M. J., Prasad, V. D., et al. (2017). A marine sponge alkaloid derivative 4-chloro fascaplysin inhibits tumor growth and VEGF mediated angiogenesis by disrupting PI3K/Akt/mTOR signaling cascade. Chemico-Biological Interactions, 275, 47–60. https://doi.org/10.1016/j.cbi.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  652. Chen, H. L., Su, Y. C., Chen, H. C., Su, J. H., Wu, C. Y., Wang, S. W., et al. (2021). Heteronemin suppresses lymphangiogenesis through ARF-1 and MMP-9/VE-cadherin/vimentin. Biomedicines, 9(9), 1109. https://doi.org/10.3390/biomedicines9091109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  653. Cheng, S. Y., Chen, N. F., Lin, P. Y., Su, J. H., Chen, B. H., Kuo, H. M., et al. (2019). Anti-invasion and antiangiogenic effects of stellettin B through inhibition of the Akt/Girdin signaling pathway and VEGF in glioblastoma cells. Cancers, 11(2), 220. https://doi.org/10.3390/cancers11020220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  654. Mohammed, K. A., Jadulco, R. C., Bugni, T. S., Harper, M. K., Sturdy, M., & Ireland, C. M. (2008). Strongylophorines: Natural product inhibitors of hypoxia-inducible factor-1 transcriptional pathway. Journal of Medicinal Chemistry, 51(5), 1402–1405.

    CAS  PubMed  Google Scholar 

  655. Liu, Y., Liu, R., Mao, S.-C., Morgan, J. B., Jekabsons, M. B., Zhou, Y.-D., et al. (2008). Molecular-targeted antitumor agents. 19. Furospongolide from a marine Lendenfeldia sp. sponge inhibits hypoxia-inducible factor-1 activation in breast tumor cells. Journal of Natural Products, 71(11), 1854–1860.

    CAS  PubMed  PubMed Central  Google Scholar 

  656. Wätjen, W., Putz, A., Chovolou, Y., Kampkötter, A., Totzke, F., Kubbutat, M. H., et al. (2009). Hexa-, hepta- and nonaprenylhydroquinones isolated from marine sponges Sarcotragus muscarum and Ircinia fasciculata inhibit NF-kappaB signalling in H4IIE cells. Journal of Pharmacy and Pharmacology, 61(7), 919–924. https://doi.org/10.1211/jpp/61.07.0011

    Article  CAS  PubMed  Google Scholar 

  657. Sayed, K. A. E., Khanfar, M. A., Shallal, H. M., Muralidharan, A., Awate, B., Youssef, D. T., et al. (2008). Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. Journal of Natural Products, 71(3), 396–402.

    PubMed  PubMed Central  Google Scholar 

  658. Atmaca, H., & Uzunoglu, S. (2014). Anti-angiogenic effects of trabectedin (Yondelis; ET-743) on human breast cancer cells. European Cytokine Network, 25(1), 1–7. https://doi.org/10.1684/ecn.2014.0347

    Article  CAS  PubMed  Google Scholar 

  659. Choi, I. K., Shin, H. J., Lee, H. S., & Kwon, H. J. (2007). Streptochlorin, a marine natural product, inhibits NF-kappaB activation and suppresses angiogenesis in vitro. Journal of Microbiology and Biotechnology, 17(8), 1338–1343.

    CAS  PubMed  Google Scholar 

  660. Oo, Y., Nealiga, J. Q. L., Suwanborirux, K., Chamni, S., Ecoy, G. A. U., Pongrakhananon, V., et al. (2021). 22-O-(N-Boc-L-glycine) ester of renieramycin M inhibits migratory activity and suppresses epithelial-mesenchymal transition in human lung cancer cells. Journal of Natural Medicines, 75(4), 949–966. https://doi.org/10.1007/s11418-021-01549-3

    Article  CAS  PubMed  Google Scholar 

  661. Kim, R. K., Suh, Y., Yoo, K. C., Cui, Y. H., Hwang, E., Kim, H. J., et al. (2015). Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Science, 106(1), 94–101. https://doi.org/10.1111/cas.12562

    Article  CAS  PubMed  Google Scholar 

  662. Ecoy, G. A. U., Chamni, S., Suwanborirux, K., Chanvorachote, P., & Chaotham, C. (2019). Jorunnamycin A from Xestospongia sp. suppresses epithelial to mesenchymal transition and sensitizes anoikis in human lung cancer cells. Journal of Natural Products, 82(7), 1861–1873. https://doi.org/10.1021/acs.jnatprod.9b00102

    Article  CAS  PubMed  Google Scholar 

  663. Taş, İ, Han, J., Park, S. Y., Yang, Y., Zhou, R., Gamage, C. D. B., et al. (2019). Physciosporin suppresses the proliferation, motility and tumourigenesis of colorectal cancer cells. Phytomedicine, 56, 10–20. https://doi.org/10.1016/j.phymed.2018.09.219

    Article  CAS  PubMed  Google Scholar 

  664. Bai, Y., Wang, X., Cai, M., Ma, C., Xiang, Y., Hu, W., et al. (2021). Cinobufagin suppresses colorectal cancer growth via STAT3 pathway inhibition. American Journal of Cancer Research, 11(1), 200–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  665. Park, J. Y., Ji, Y. S., Zhu, H., Zhang, Y., Park, D. H., Kim, Y. J., et al. (2019). Anti-angiogenic effect of asperchalasine A via attenuation of VEGF signaling. Biomolecules, 9(8), 358. https://doi.org/10.3390/biom9080358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  666. Sadeeshkumar, V., Duraikannu, A., Ravichandran, S., Kodisundaram, P., Fredrick, W. S., & Gobalakrishnan, R. (2017). Modulatory efficacy of dieckol on xenobiotic-metabolizing enzymes, cell proliferation, apoptosis, invasion and angiogenesis during NDEA-induced rat hepatocarcinogenesis. Molecular and Cellular Biochemistry, 433(1–2), 195–204. https://doi.org/10.1007/s11010-017-3027-8

    Article  CAS  PubMed  Google Scholar 

  667. Yang, S., Xiao, Z., Lin, L., Tang, Y., Hong, P., Sun, S., et al. (2021). Mechanism analysis of antiangiogenic d-isofloridoside from marine edible red algae Laurencia undulata in HUVEC and HT1080 cell. Journal of Agriculture and Food Chemistry, 69(46), 13787–13795. https://doi.org/10.1021/acs.jafc.1c05007

    Article  CAS  Google Scholar 

  668. Mohammed, K. A., Hossain, C. F., Zhang, L., Bruick, R. K., Zhou, Y.-D., & Nagle, D. G. (2004). Laurenditerpenol, a new diterpene from the tropical marine alga laurencia i ntricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. Journal of Natural Products, 67(12), 2002–2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  669. Dai, J., Liu, Y., Jia, H., Zhou, Y.-D., & Nagle, D. G. (2007). Benzochromenones from the marine crinoid Comantheria rotula inhibit hypoxia-inducible factor-1 (HIF-1) in cell-based reporter assays and differentially suppress the growth of certain tumor cell lines. Journal of Natural Products, 70(9), 1462–1466.

    CAS  PubMed  PubMed Central  Google Scholar 

  670. Yue, Y. C., Yang, B. Y., Lu, J., Zhang, S. W., Liu, L., Nassar, K., et al. (2020). Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell metastasis by suppressing the VEGF-MMP2/9 signaling pathway. Microbial Cell Factories, 19(1), 213. https://doi.org/10.1186/s12934-020-01466-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  671. An, J., & Ha, E. M. (2020). Lactobacillus-derived metabolites enhance the antitumor activity of 5-FU and inhibit metastatic behavior in 5-FU-resistant colorectal cancer cells by regulating claudin-1 expression. Journal of Microbiology, 58(11), 967–977. https://doi.org/10.1007/s12275-020-0375-y

    Article  CAS  PubMed  Google Scholar 

  672. Chen, S. M., Hsu, L. J., Lee, H. L., Lin, C. P., Huang, S. W., Lai, C. J. L., et al. (2020). Lactobacillus attenuate the progression of pancreatic cancer promoted by porphyromonas gingivalis in k-rasg12d transgenic mice. Cancers, 12(12), 1–18. https://doi.org/10.3390/cancers12123522

    Article  CAS  Google Scholar 

  673. Serrill, J. D., Wan, X., Hau, A. M., Jang, H. S., Coleman, D. J., Indra, A. K., et al. (2016). Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Investigational New Drugs, 34(1), 24–40. https://doi.org/10.1007/s10637-015-0303-x

    Article  CAS  PubMed  Google Scholar 

  674. Lim, H. N., Jang, J.-P., Han, J. M., Jang, J.-H., Ahn, J. S., & Jung, H. J. (2018). Antiangiogenic potential of microbial metabolite elaiophylin for targeting tumor angiogenesis. Molecules, 23(3), 563.

    PubMed  PubMed Central  Google Scholar 

  675. Lin, S., Zhang, C., Liu, F., Ma, J., Jia, F., Han, Z., et al. (2019). Actinomycin V inhibits migration and invasion via suppressing Snail/Slug-mediated epithelial-mesenchymal transition progression in human breast cancer MDA-MB-231 cells in vitro. Mar Drugs, 17(5), 305. https://doi.org/10.3390/md17050305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  676. Finetti, F., Moglia, A., Schiavo, I., Donnini, S., Berta, G. N., Di Scipio, F., et al. (2018). Yeast-derived recombinant avenanthramides inhibit proliferation, migration and epithelial mesenchymal transition of colon cancer cells. Nutrients, 10(9), 1159. https://doi.org/10.3390/nu10091159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  677. Fakhri, S., Khodamorady, M., Naseri, M., Farzaei, M. H., & Khan, H. (2020). The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacological Research, 159, 104895.

    CAS  PubMed  Google Scholar 

  678. Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., et al. (2021). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in Cancer Biology, 69, 5–23.

    CAS  PubMed  Google Scholar 

  679. Lagoa, R., Silva, J., Rodrigues, J. R., & Bishayee, A. (2020). Advances in phytochemical delivery systems for improved anticancer activity. Biotechnology Advances, 38, 107382.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.F., and A.B.; methodology and software, S.F., S.Z.M., and F.F.; writing — original draft, S.F., S.Z.M., F.F., L.K. and A.B.; writing — review and editing, S.F., S.Z.M., K.W., and A.B.; visualization, S.F.; supervision, S.F. and A.B.; project administration, A.B.

Corresponding author

Correspondence to Anupam Bishayee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, S., Moradi, S.Z., Faraji, F. et al. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 43, 501–574 (2024). https://doi.org/10.1007/s10555-023-10136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10136-9

Keywords

Navigation