Skip to main content

Advertisement

Log in

The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EMT:

Epithelial to mesenchymal transition

ROS:

Reactive oxygen species

NAC:

N-acetyl cysteine

H2 DCFDA:

2′,7′-dichlorodihydrofluorescein diacetate

H2O2 :

Hydrogen peroxide

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  2. Scher HI, Heller G (2000) Clinical states in prostate cancer: toward a dynamic model of disease progression. Urology 55:322–327

    Article  Google Scholar 

  3. Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, Blumenstein BA, Davis MA, Goodman PJ (1989) A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 321:419–424

    Article  PubMed  CAS  Google Scholar 

  4. Beer TM, El-Geneidi M, Eilers KM (2003) Docetaxel (taxotere) in the treatment of prostate cancer. Expert Rev Anticancer Ther 3:261–268

    Article  PubMed  CAS  Google Scholar 

  5. Mediavilla-Varela M, Pacheco FJ, Almaguel F, Perez J, Sahakian E, Daniels TR, Leoh LS, Padilla A, Wall NR, Lilly MB, De Leon M, Casiano CA (2009) Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer 8:68

    Article  PubMed  Google Scholar 

  6. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    Article  PubMed  CAS  Google Scholar 

  7. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  PubMed  CAS  Google Scholar 

  8. Savagner P, Vallés AM, Jouanneau J, Yamada KM, Thiery JP (1994) Alternative splicing in fibroblast growth factor receptor 2 is associated with induced epithelial–mesenchymal transition in rat bladder carcinoma cells. Mol Biol Cell 5(8):851–862

    PubMed  CAS  Google Scholar 

  9. Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA (2010) Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol 26(6):553–567

    Article  PubMed  CAS  Google Scholar 

  10. Odero-Marah VA, Wang R, Chu G, Zayzafoon M, Xu J, Shi C, Marshall FF, Zhau HE, Chung LW (2008) Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Res 18(8):858–870

    Article  PubMed  CAS  Google Scholar 

  11. McKeithen D, Graham T, Chung LW, Odero-Marah V (2010) Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate 70(9):982–992

    PubMed  CAS  Google Scholar 

  12. O’Byrne KJ, Dalgleish AG (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer 85(4):473–483

    Article  PubMed  Google Scholar 

  13. Zieba M, Suwalski M, Kwiatkowska S, Piasecka G, Grzelewska-Rzymowska I, Stolarek R, Nowak D (2000) Comparison of hydrogen peroxide generation and the content of lipid peroxidation products in lung cancer tissue and pulmonary parenchyma. Respir Med 94(8):800–805

    Article  PubMed  CAS  Google Scholar 

  14. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127

    Article  PubMed  CAS  Google Scholar 

  15. Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794

    Article  PubMed  CAS  Google Scholar 

  16. Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB (2005) Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 16(3):667–675

    Article  PubMed  CAS  Google Scholar 

  17. Barnett P, Arnold RS, Mezencev R, Chung LW, Zayzafoon M, Odero-Marah V (2011) Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells. Biochem Biophys Res Commun 404(1):34–39

    Article  PubMed  CAS  Google Scholar 

  18. Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, Petros JA, Arnold RS (2005) Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62(2):200–207

    Article  PubMed  CAS  Google Scholar 

  19. Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347

    Article  PubMed  CAS  Google Scholar 

  20. Liu YW, Sakaeda T, Takara K, Nakamura T, Ohmoto N, Komoto C, Kobayashi H, Yagami T, Okamura N, Okumura K (2003) Effects of reactive oxygen species on cell proliferation and death in HeLa cells and its MDR1-overexpressing derivative cell line. Bio Pharm Bull 26(2):278–281

    Article  CAS  Google Scholar 

  21. Ageing and Cancer. Home page at: http://www.ageingcancer.wordpress.com/. Accessed 21 Aug 2010

  22. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53–p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21(24):3872–3878

    Article  PubMed  CAS  Google Scholar 

  23. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O (1998) Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J 19(Suppl B):B2–B11

    PubMed  CAS  Google Scholar 

  24. Neuhouser ML (2004) Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 50:1–7

    Article  PubMed  CAS  Google Scholar 

  25. Greenwald P, Nixon DW, Malone WF, Kelloff GJ, Stern HR, Witkin KM (1990) Concepts in cancer chemoprevention research. Cancer 65:1483–1490

    Article  PubMed  CAS  Google Scholar 

  26. Wattenberg LW (1992) Inhibition of carcinogenesis by minor dietary constituents. Cancer Res 52:2085s–2091s

    PubMed  CAS  Google Scholar 

  27. Hocman G (1989) Prevention of cancer: vegetables and plants. Comp Biochem Physiol B 93:201–212

    PubMed  CAS  Google Scholar 

  28. Browne LM, Conn KL, Ayer WA, Tewari JP (1991) The camalexins: new phytoalexins produced in the leaves of Camelina sativa (cruciferae). Tetrahedron 47:3903–3914

    Article  Google Scholar 

  29. Jimenez LD, Ayer WA, Tewari JP (1997) Phytoalexins produced in the leaves of Capsella bursa-pastoris (shepherd’s purse). Phytoprotection 78:99–103

    Article  CAS  Google Scholar 

  30. Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    Article  PubMed  CAS  Google Scholar 

  31. Mezencev R, Galizzi M, Kutschy P, Docampo R (2009) Trypanosoma cruzi: antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Exp Parasitol 122:66–69

    Article  PubMed  CAS  Google Scholar 

  32. Moody CJ, Roffey JRA, Stephens MA, Stratford IJ (1997) Synthesis and cytotoxic activity of indolyl thiazoles. Anticancer Drugs 8:489–499

    Article  PubMed  CAS  Google Scholar 

  33. Mezencev R, Updegrove T, Kutschy P, Repovská M, McDonald JF (2011) Camalexin induces apoptosis in T-leukemia Jurkat cells by increased concentration of reactive oxygen species and activation of caspase-8 and caspase-9. J Nat Med 65(3–4):488–499

    Article  PubMed  CAS  Google Scholar 

  34. Ayer WA, Craw PA, Ma YT, Miao S (1992) Synthesis of camalexin and related phytoalexins. Tetrahedron 48:2919–2924

    Article  CAS  Google Scholar 

  35. Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, Oh YJ (2003) Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. J Neurosci 23(12):5069–5078

    PubMed  CAS  Google Scholar 

  36. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074

    Article  PubMed  CAS  Google Scholar 

  37. Kumar S (1999) Mechanisms mediating caspase activation in cell death. Cell Death Differ 6:1060–1066

    Article  PubMed  CAS  Google Scholar 

  38. Escrivà M, Peiró S, Herranz N, Villagrasa P, Dave N, Montserrat-Sentís B, Murray SA, Francí C, Gridley T, Virtanen I, García de Herreros A (2008) Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol Cell Biol 28(5):1528–1540

    Article  PubMed  Google Scholar 

  39. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  PubMed  CAS  Google Scholar 

  40. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785

    Article  PubMed  CAS  Google Scholar 

  41. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9):2059–2068

    Article  PubMed  CAS  Google Scholar 

  42. Chetram MA, Don-Salu-Hewage AS, Hinton CV (2011) ROS enhances CXCR4-mediated functions through inactivation of PTEN in prostate cancer cells. Biochem Biophys Res Commun 410:195–200

    Article  PubMed  CAS  Google Scholar 

  43. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15(1):7–10

    Article  PubMed  CAS  Google Scholar 

  44. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7(3):153–163

    Article  PubMed  CAS  Google Scholar 

  45. Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  PubMed  Google Scholar 

  46. Mattson MP, Culmsee C, Yu ZF (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 301:173–187

    Article  PubMed  CAS  Google Scholar 

  47. Clerk A, Cole SM, Cullingford TE, Harrison JG, Jormakka M, Valks DM (2003) Regulation of cardiac myocyte cell death. Pharmacol Ther 97:223–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants 5P20MD002285 (V.A.O.M) and 8G12MD007590-26 (V.A.O.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie A. Odero-Marah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B.A., Neal, C.L., Chetram, M. et al. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. J Nat Med 67, 607–618 (2013). https://doi.org/10.1007/s11418-012-0722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-012-0722-3

Keywords

Navigation