Skip to main content

Advertisement

Log in

Crocin and Metformin suppress metastatic breast cancer progression via VEGF and MMP9 downregulations: in vitro and in vivo studies

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Metastatic breast cancer remains a serious health concern and numerous investigations recommended medicinal plants as a complementary therapy. Crocin is one of the known anticancer bio-component. Recently, the inhibitory effect of metformin has been studied on the various aspects of cancer. However, no study reported their combination effects on metastatic breast cancer. In the present study, we have assessed their anti-metastatic effects on in vitro and in vivo breast cancer models. Using MTT assay, scratch, and adhesion tests, we have evaluated the cytotoxic, anti-invasive and anti-adhesion effects of crocin and metformin on 4T1 cell line, respectively. Their protective effects and MMP9 as well as VEGF protein expression levels (Western blotting) investigated in the 4T1 murine breast cancer model. Our results showed that both crocin and metformin reduced cell viability, delayed scratch healing and inhibited the cell adhesion, in vitro. While crocin alone restored the mice’s weight reduction, crocin, metformin, and their combination significantly reduced the tumor volume size and enhanced animal survival rate in murine breast cancer model, responses that were associated with VEGF and MMP9 down-regulation. These findings suggest that a combination of crocin and metformin could serve as a novel therapeutic approach to enhance the effectiveness of metastatic breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Additional information is available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    PubMed  Google Scholar 

  2. Lambert W, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Massagué J, Batlle E, Gomis RR (2017) Understanding the molecular mechanisms driving metastasis. Mol Oncol 11(1):3–4

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC (2011) Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol 137(2):183–192

    Article  CAS  PubMed  Google Scholar 

  5. Seyfried TN, Huysentruyt LC (2013) On the origin of cancer metastasis. Crit Rev Oncog 18(1–2):43–73

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yao H, Ashihara E, Maekawa T (2011) Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets 15(7):873–887

    Article  CAS  PubMed  Google Scholar 

  7. Dey N, Barwick BG, Moreno CS, Ordanic-Kodani M, Chen Z, Oprea-Ilies G, Tang W, Catzavelos C, Kerstann KF, Sledge GW (2013) Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 13(1):537

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669

    Article  CAS  PubMed  Google Scholar 

  9. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Enzyme Inhib Med Chem 31(1):177–183

    Article  CAS  Google Scholar 

  10. McArthur HL, Hudis CA (2007) Breast cancer chemotherapy. Cancer J 13(3):141–147

    Article  CAS  PubMed  Google Scholar 

  11. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Transl Med 2(6):57

    PubMed  PubMed Central  Google Scholar 

  13. DeCensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S (2010) Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res 3:1451–1461. https://doi.org/10.1158/1940-6207.CAPR-10-0157

    Article  CAS  Google Scholar 

  14. Abdullaev FI (2002) Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med 227(1):20–25

    Article  CAS  Google Scholar 

  15. Abdullaev F, Espinosa-Aguirre J (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev 28(6):426–432

    Article  CAS  PubMed  Google Scholar 

  16. Hoshyar R, Mollaei H (2017) A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J Pharm Pharmacol 69(11):1419–1427

    Article  CAS  PubMed  Google Scholar 

  17. Mollaei H, Safaralizadeh R, Babaei E, Abedini MR, Hoshyar R (2017) The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells. Biomed Pharmacother 94:307–316

    Article  CAS  PubMed  Google Scholar 

  18. Arzi L, Riazi G, Sadeghizadeh M, Hoshyar R, Jafarzadeh N (2018) A comparative study on anti-invasion, antimigration, and antiadhesion effects of the bioactive carotenoids of saffron on 4T1 breast cancer cells through their effects on Wnt/β-catenin pathway genes. DNA Cell Biol 37(8):697–707

    Article  CAS  PubMed  Google Scholar 

  19. Arzi L, Farahi A, Jafarzadeh N, Riazi G, Sadeghizadeh M, Hoshyar R (2018) Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with Wnt/β-catenin pathway in murine model. DNA Cell Biol 37(12):1068–1075

    Article  CAS  PubMed  Google Scholar 

  20. Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, Del Barco S, Martin-Castillo B, Lopez-Bonet E, Menendez JA (2011) The anti-diabetic drug metformin suppresses the metastasis-associated protein CD24 in MDA-MB-468 triple-negative breast cancer cells. Oncol Rep 25(1):135–140

    CAS  PubMed  Google Scholar 

  21. Rattan R, Ali Fehmi R, Munkarah A (2012) Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis. J Oncol 2012:928127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bolhasani A, Bathaie SZ, Yavari I, Moosavi-Movahedi AA, Ghaffari M (2005) Separation and purification of some components of Iranian saffron. Asian J Chem 17:725

    CAS  Google Scholar 

  23. Abedini MR, Wang P-W, Huang Y-F, Cao M, Chou C-Y, Shieh D-B, Tsang BK (2014) Cell fate regulation by gelsolin in human gynecologic cancers. Proc Natl Acad Sci 111(40):14442–14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang PW, Abedini MR, Yang LX, Ding AA, Figeys D, Chang JY, Tsang BK, Shieh DB (2014) Gelsolin regulates cisplatin sensitivity in human head-and-neck cancer. Int J Cancer 135(12):2760–2769

    Article  CAS  PubMed  Google Scholar 

  25. Abedini MR, Erfanian N, Nazem H, Jamali S, Hoshyar R (2016) Anti-proliferative and apoptotic effects of Ziziphus Jujube on cervical and breast cancer cells. Avicenna J Phytomed 6(2):142

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods Mol Biol 294:23–29. https://doi.org/10.1385/1-59259-860-9:023

    Article  PubMed  Google Scholar 

  27. Dastpeyman M, Motamed N, Azadmanesh K, Mostafavi E, Kia V, Jahanian-Najafabadi A, Shokrgozar MA (2012) Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of β1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI. Med Oncol 29(4):2512–2518

    Article  CAS  PubMed  Google Scholar 

  28. Cai Z, Teng L, Zhou J, Yan Y, Zhang Y, Lv G, Chen J (2019) Design and synthesis of a native heparin disaccharide grafted poly-2-aminoethyl methacrylate glycopolymer for inhibition of melanoma cell metastasis. Int J Biol Macromol 126:612–619

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Zhang GL, Sun X, Cao KX, Ma C, Nan N, Yang GW, Yu MW, Wang XM (2018) Establishment of a murine breast tumor model by subcutaneous or orthotopic implantation. Oncol Lett 15(5):6233–6240

    PubMed  PubMed Central  Google Scholar 

  30. Farhangi B, Alizadeh AM, Khodayari H, Khodayari S, Dehghan MJ, Khori V, Heidarzadeh A, Khaniki M, Sadeghiezadeh M, Najafi F (2015) Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. Eur J Pharmacol 758:188–196. https://doi.org/10.1016/j.ejphar.2015.03.076

    Article  CAS  PubMed  Google Scholar 

  31. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  32. Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274(2):113–126. https://doi.org/10.1111/joim.12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rahaiee S, Hashemi M, Shojaosadati SA, Moini S, Razavi SH (2017) Nanoparticles based on crocin loaded chitosan-alginate biopolymers: antioxidant activities, bioavailability and anticancer properties. Int J Biol Macromol 99:401–408

    Article  CAS  PubMed  Google Scholar 

  34. Ashrafi M, Bathaie S, Taghikhani M, Moosavi-Movahedi A (2005) The effect of carotenoids obtained from saffron on histone H1 structure and H1–DNA interaction. Int J Biol Macromol 36(4):246–252

    Article  CAS  PubMed  Google Scholar 

  35. Hoshyar R, Bathaie SZ, Sadeghizadeh M (2013) Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA Cell Biol 32(2):50–57

    Article  CAS  PubMed  Google Scholar 

  36. Mostafavinia SE, Khorashadizadeh M, Hoshyar R (2016) Antiproliferative and proapoptotic effects of crocin combined with hyperthermia on human breast cancer cells. DNA Cell Biol 35(7):340–347

    Article  CAS  PubMed  Google Scholar 

  37. Ganjali M, Ganjali H (2013) Anticancer effect of metformin, an anti-diabetic drug, on breast cancer cells. J Novel Appl Sci 2:796–791

    Google Scholar 

  38. Ko JC, Huang YC, Chen HJ, Tseng SC, Chiu HC, Wo TY, Huang YJ, Weng SH, Chiou RY, Lin YW (2013) Metformin induces cytotoxicity by down-regulating thymidine phosphorylase and excision repair cross-complementation 1 expression in non-small cell lung cancer cells. Basic Clin Pharmacol Toxicol 113(1):56–65

    Article  CAS  PubMed  Google Scholar 

  39. Mu Q, Jiang M, Zhang Y, Wu F, Li H, Zhang W, Wang F, Liu J, Li L, Wang D (2018) Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells. Onco Targets Ther 11:1767

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chung Y-G, Tak E, Hwang S, Lee J-Y, Kim J-Y, Kim Y-Y, Song G-W, Lee K-J, Kim N (2018) Synergistic effect of metformin on sorafenib in in vitro study using hepatocellular carcinoma cell lines. Ann Hepato-biliary-pancreatic Surg 22(3):179–184

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rattan R, Graham RP, Maguire JL, Giri S, Shridhar V (2011) Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia (New York, NY) 13(5):483

    Article  CAS  Google Scholar 

  42. Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A (2012) Effect of metformin on the proliferation, migration, and MMP-2 and-9 expression of human umbilical vein endothelial cells. Mol Med Rep 5(4):1068–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, Alonso GL, Tatone C, Di Cesare E, Jannini EA, Lenzi A (2014) Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int 2014:135048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Giles ED, Jindal S, Wellberg EA, Schedin T, Anderson SM, Thor AD, Edwards DP, MacLean PS, Schedin P (2018) Metformin inhibits stromal aromatase expression and tumor progression in a rodent model of postmenopausal breast cancer. Breast Cancer Res 20(1):50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES (2014) Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 5(9):2736

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu W, Xu J, Wang M, Wang Q, Bi Y, Han M (2011) Tumor-derived vascular endothelial growth factor (VEGF)-a facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway. Int J Oncol 39(5):1213–1220

    PubMed  Google Scholar 

  47. Yang X, Zhang Y, Hosaka K, Andersson P, Wang J, Tholander F, Cao Z, Morikawa H, Tegnér J, Yang Y (2015) VEGF-B promotes cancer metastasis through a VEGF-A–independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci 112(22):E2900–E2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J-C, Li G-Y, Bo W, Han S-X, Sun X, Jiang Y-N, Shen Y-W, Zhou C, Feng J, Shao-Ying L, Liu J-L, Wang M-D, Liu P-J (2019) Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. J Exp Clin Cancer Res 38(235):1–17

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the laboratory in Birjand University of Medical Sciences.

Funding

This study was made possible by a Grant (ir.bums.REC.1396.268) from the Birjand University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Abedini or Reyhane Hoshyar.

Ethics declarations

Conflict of interest

Authors declared no conflict of interest.

Ethical approval

This study was made possible by ethical code (ir.bums.REC.1396.268) from the Birjand University of Medical Sciences.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahi, A., Abedini, M.R., Javdani, H. et al. Crocin and Metformin suppress metastatic breast cancer progression via VEGF and MMP9 downregulations: in vitro and in vivo studies. Mol Cell Biochem 476, 3341–3351 (2021). https://doi.org/10.1007/s11010-020-04043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04043-8

Keywords

Navigation