Harris, A. L. (2002). Hypoxia – A key regulatory factor in tumour growth. Nature Reviews Cancer, 2, 38–47.
Article
CAS
PubMed
Google Scholar
Fang, J. S., Gillies, R. D., & Gatenby, R. A. (2008). Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Seminars in Cancer Biology, 18, 330–337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nature Reviews Cancer, 18, 576–585.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratcliffe, P. J. (2013). Oxygen sensing and hypoxia signalling pathways in animals: The implications of physiology for cancer. Journal of Physiology, 591, 2027–2042.
Article
CAS
PubMed
Google Scholar
Wouters, B. G., & Koritzinsky, M. (2008). Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature Reviews Cancer, 8, 851–864.
Article
CAS
PubMed
Google Scholar
Semenza, G. L. (2012). Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33, 207–214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillies, R. J., & Gatenby, R. A. (2015). Metabolism and its sequelae in cancer evolution and therapy. Cancer Journal, 21, 88–96.
Article
CAS
Google Scholar
Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulze, A., & Harris, A. L. (2012). How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 491, 364–373.
Article
CAS
PubMed
Google Scholar
Parks, S. K., Chiche, J., & Pouyssegur, J. (2011). pH control mechanisms of tumor survival and growth. Journal of Cell Physiology, 226, 299–308.
Article
CAS
Google Scholar
Swietach, P. (2019). What is pH regulation, and why do cancer cells need it? Cancer Metastasis Reviews. https://doi.org/10.1007/s10555-018-09778-x.
Raghunand, N., Gatenby, R. A., & Gillies, R. J. (2003). Microenvironmental and cellular consequences of altered blood flow in tumours. British Journal of Radiology, 76, S11–S22.
Article
PubMed
Google Scholar
Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature Reviews Cancer, 8, 56–61.
Article
CAS
PubMed
Google Scholar
Lardner, A. (2001). The effects of extracellular pH on immune function. Journal of Leukocyte Biology, 69, 522–530.
CAS
PubMed
Google Scholar
Calcinotto, A., Filipazzi, P., Crioni, M., Iero, M., De Milito, A., Ricupito, A., et al. (2016). Modulation of microenvironment acidity reverses energy in human and murine tumor-infiltrating T lymphocytes. Cancer Research, 72, 2746–2756.
Article
Google Scholar
Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russel, S., Weber, A. M., Luddy, K., et al. (2016). Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Research, 76, 1381–1390.
Article
CAS
PubMed
Google Scholar
Wojtkowiak, J. W., Verduzco, D., Schramm, K. J., & Gillies, R. J. (2011). Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Molecular Pharmacology, 8, 2032–2038.
Article
CAS
Google Scholar
Corbet, C., & Feron, O. (2017). Tumour acidosis: From the passenger to the driver’s seat. Nature Reviews Cancer, 17, 577–593.
Article
CAS
PubMed
Google Scholar
Rohani, N., Hao, L., Alexis, M. S., Joughin, B. A., Krismer, K., Moufarrej, M. N., Soltis, A. R., Lauffenburger, D. A., Yaffe, M. B., Burge, C. B., Bhatia, S. N., & Gertler, F. B. (2019). Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Research, 79, 1952–1966.
Article
CAS
PubMed
Google Scholar
Lloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S., & Gatenby, R. A. (2016). Darwinian dynamics of intratumoral heterogeneity: Not solely random mutations but also variable environmental selection forces. Cancer Research, 76, 3136–3144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pastorek, J., Pastorekova, S., Callebaut, I., Mornon, J. P., Zelník, V., Opavský, R., Zatovicova, M., Liao, S., Portetelle, D., Stanbridge, E. J., et al. (1994). Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene, 9, 2877–2888.
CAS
PubMed
Google Scholar
Pastorekova, S., Parkkila, S., Pastorek, J., & Supuran, C. T. (2004). Carbonic anhydrases: Current state of the art, therapeutic applications and future prospects. Journal of Enzyme Inhibition and Medicinal Chemistry, 19, 199–229.
Article
CAS
PubMed
Google Scholar
Opavský, R., Pastoreková, S., Zelník, V., Gibadulinová, A., Stanbridge, E. J., Závada, J., Kettmann, R., & Pastorek, J. (1996). Human MN/CA9 gene, a novel member of the carbonic anhydrase family: Structure and exon to protein domain relationships. Genomics, 33, 480–487.
Article
PubMed
Google Scholar
Innocenti, A., Pastorekova, S., Pastorek, J., Scozzafava, A., De Simone, G., & Supuran, C. T. (2009). The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as an intrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorganic & Medicinal Chemistry Letters, 19, 5825–5828.
Article
CAS
Google Scholar
Mahon, B. P., Bhatt, A., Socorro, L., Driscoll, J. M., Okoh, C., Lomelino, C. L., Mboge, M. Y., Kurian, J. J., Tu, C., Agbandje-McKenna, M., Frost, S. C., & McKenna, R. (2016). The structure of carbonic anhydrase IX is adapted for low-pH catalysis. Biochemistry, 55, 4642–4653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svastová, E., Hulíková, A., Rafajová, M., Zat’ovicová, M., Gibadulinová, A., Casini, A., Cecchi, A., Scozzafava, A., Supuran, C. T., Pastorek, J., & Pastoreková, S. (2004). Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Letters, 577, 439–445.
Article
CAS
PubMed
Google Scholar
Lee, S. H., McIntyre, D., Honess, D., Hulikova, A., Pacheco-Torres, J., Cerdán, S., Swietach, P., Harris, A. L., & Griffiths, J. R. (2018). Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. British Journal of Cancer, 119, 622–630.
Article
CAS
PubMed
Google Scholar
Morgan, P. E., Pastorekova, S., Stuart-Tilley, A. K., Alper, S. L., & Casey, J. R. (2007). Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters. American Journal of Physiology. Cell Physiology, 293, C738–C748.
Article
CAS
PubMed
Google Scholar
Orlowski, A., De Giusti, V. C., Morgan, P. E., Aiello, E. A., & Alvarez, B. V. (2012). Binding of carbonic anhydrase IX to extracellular loop 4 of the NBCe1 Na+/HCO3-cotransporter enhances NBCe1-mediated HCO3-influx in the rat heart. American Journal of Physiology-Cell Physiology, 303, C69–C80.
Article
CAS
PubMed
Google Scholar
Svastova, E., Witarski, W., Csaderova, L., Kosik, I., Skvarkova, L., Hulikova, A., Zatovicova, M., Barathova, M., Kopacek, J., Pastorek, J., & Pastorekova, S. (2012). Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. Journal of Biological Chemistry, 287, 3392–3402.
Article
CAS
PubMed
Google Scholar
Jamali, S., Klier, M., Ames, S., Barros, L. F., McKenna, R., Deitmer, J. W., & Becker, H. M. (2015). Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Scientific Reports, 5, 13605.
Article
PubMed
PubMed Central
Google Scholar
Ames, S., Pastorekova, S., & Becker, H. M. (2018). The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget, 9, 27940–27957.
Article
PubMed
PubMed Central
Google Scholar
Csaderova, L., Debreova, M., Radvak, P., Stano, M., Vrestiakova, M., Kopacek, J., et al. (2013). The effect of carbonic anhydrase IX on focal contacts during cell spreading and migration. Frontiers in Physiology, 4, 271.
Article
PubMed
PubMed Central
Google Scholar
Svastova, E., Zilka, N., Zatovicova, M., Gibadulinova, A., Ciampor, F., Pastorek, J., et al. (2003). Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with beta-catenin. Exerimental Cell Research, 290, 332–345.
Article
CAS
Google Scholar
Riemann, A., Rauschner, M., Gießelmann, M., Reime, S., Haupt, V., & Thews, O. (2019). Extracellular acidosis modulates the expression of epithelial-mesenchymal transition (EMT) markers and adhesion of epithelial and tumor cells. Neoplasia, 21, 450–458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wykoff, C. C., Beasley, N. J., Watson, P. H., Turner, K. J., Pastorek, J., Sibtain, A., et al. (2000). Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Research, 60, 7075–7083.
CAS
PubMed
Google Scholar
Suzuki, N., Vojnovic, N., Lee, K. L., Yang, H., Gradin, K., & Poellinger, L. (2018). HIF-dependent and reversible nucleosome disassembly in hypoxia-inducible gene promoters. Experimental Cell Research, 366, 181–191.
Article
CAS
PubMed
Google Scholar
Kaluz, S., Kaluzova, M., Chrastina, A., Olive, P. L., Pastorekova, S., Pastorek, J., et al. (2002). Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia inducible factor 1 alpha stabilization: A role for phosphatidylinositol 3′-kinase. Cancer Research, 62, 4469–4477.
CAS
PubMed
Google Scholar
Ihnatko, R., Kubes, M., Takacova, M., Sedlakova, O., Sedlak, J., Pastorek, J., et al. (2006). Extracellular acidosis elevates carbonic anhydrase IX in human glioblastoma cells via transcriptional modulation that does not depend on hypoxia. International Journal of Oncology, 29, 1025–1033.
CAS
PubMed
Google Scholar
Kopacek, J., Barathova, M., Dequiedt, F., Sepelakova, J., Kettmann, R., Pastorek, J., & Pastorekova, S. (2005). MAPK pathway contributes to density- and hypoxia-induced expression of the tumor-associated carbonic anhydrase IX. Biochimica et Biophysica Acta, 1729, 41–49.
Article
CAS
PubMed
Google Scholar
Takacova, M., Holotnakova, T., Barathova, M., Pastorekova, S., Kopacek, J., & Pastorek, J. (2010). Src induces expression of carbonic anhydrase IX via hypoxia- inducible factor 1. Oncology Reports, 23, 869–874.
CAS
PubMed
Google Scholar
Takacova, M., Bullova, P., Simko, V., Skvarkova, L., Poturnajova, M., Feketeova, L., Babal, P., Kivela, A. J., Kuopio, T., Kopacek, J., Pastorek, J., Parkkila, S., & Pastorekova, S. (2014). Expression pattern of carbonic anhydrase IX in medullary thyroid carcinoma supports a role for RET-mediated activation of the HIF pathway. American Journal of Pathology, 184, 953–965.
Article
CAS
PubMed
Google Scholar
Ivanov, S. V., Kuzmin, I., Wei, M. H., Pack, S., Geil, L., Johnson, B. E., et al. (1998). Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proceedings of the National Academy of Sciences of the Unites States of America, 95, 12596–12601.
Article
CAS
Google Scholar
Stillebroer, A. B., Mulders, P. F., Boerman, O. C., Oyen, W. J., & Oosterwijk, E. (2010). Carbonic anhydrase IX in renal cell carcinoma: Implications for prognosis, diagnosis, and therapy. European Urology, 58, 75–83.
Article
CAS
PubMed
Google Scholar
Barathova, M., Takacova, M., Holotnakova, T., Gibadulinova, A., Ohradanova, A., Zatovicova, M., Hulikova, A., Kopacek, J., Parkkila, S., Supuran, C. T., Pastorekova, S., & Pastorek, J. (2008). Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype. British Journal of Cancer, 98, 129–136.
Article
CAS
PubMed
Google Scholar
Ditte, P., Dequiedt, F., Svastova, E., Hulikova, A., Ohradanova-Repic, A., Zatovicova, M., Csaderova, L., Kopacek, J., Supuran, C. T., Pastorekova, S., & Pastorek, J. (2011). Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Research, 71, 7558–7567.
Article
CAS
PubMed
Google Scholar
Christianson, H. C., Menard, J. A., Chandran, V. I., Bourseau-Guilmain, E., Shevela, D., Lidfeldt, J., Månsson, A. S., Pastorekova, S., Messinger, J., & Belting, M. (2017). Tumor antigen glycosaminoglycan modification regulates antibody-drug conjugate delivery and cytotoxicity. Oncotarget, 8, 66960–66974.
Article
PubMed
PubMed Central
Google Scholar
Zatovicova, M., Jelenska, L., Hulikova, A., Csaderova, L., Ditte, Z., Ditte, P., Goliasova, T., Pastorek, J., & Pastorekova, S. (2010). Carbonic anhydrase IX as an anticancer therapy target: Preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Current Pharmaceutical Design, 16, 3255–3263.
Article
CAS
PubMed
Google Scholar
Bourseau-Guilmain, E., Menard, J. A., Lindqvist, E., Indira Chandran, V., Christianson, H. C., Cerezo Magaña, M., Lidfeldt, J., Marko-Varga, G., Welinder, C., & Belting, M. (2016). Hypoxia regulates global membrane protein endocytosis through caveolin-1 in cancer cells. Nature Communications, 7, 11371.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zatovicova, M., Sedlakova, O., Svastova, E., Ohradanova, A., Ciampor, F., Arribas, J., Pastorek, J., & Pastorekova, S. (2005). Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. British Journal of Cancer, 93, 1267–1276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vidlickova, I., Dequiedt, F., Jelenska, L., Sedlakova, O., Pastorek, M., Stuchlik, S., Pastorek, J., Zatovicova, M., & Pastorekova, S. (2016). Apoptosis-induced ectodomain shedding of hypoxia-regulated carbonic anhydrase IX from tumor cells: A double-edged response to chemotherapy. BMC Cancer, 16, 239.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horie, K., Kawakami, K., Fujita, Y., Sugaya, M., Kameyama, K., Mizutani, K., Deguchi, T., & Ito, M. (2017). Exosomes expressing carbonic anhydrase 9 promote angiogenesis. Biochemical and Biophysical Research Communications, 492, 356–361.
Article
CAS
PubMed
Google Scholar
Logozzi, M., Capasso, C., Di Raimo, R., Del Prete, S., Mizzoni, D., Falchi, M., Supuran, C. T., & Fais, S. (2019). Prostate cancer cells and exosomes in acidic condition show increased carbonic anhydrase IX expression and activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 34, 272–278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rafajová, M., Zatovicová, M., Kettmann, R., Pastorek, J., & Pastoreková, S. (2004). Induction by hypoxia combined with low glucose or low bicarbonate and high posttranslational stability upon reoxygenation contribute to carbonic anhydrase IX expression in cancer cells. International Journal of Oncology, 24, 995–1004.
PubMed
Google Scholar
Pastoreková, S., Parkkila, S., Parkkila, A. K., Opavský, R., Zelník, V., Saarnio, J., & Pastorek, J. (1997). Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology, 112, 398–408.
Article
PubMed
Google Scholar
Gut, M. O., Parkkila, S., Vernerova, Z., Rohde, E., Zavada, J., Hocker, M., Pastorek, J., Karttunen, T., Gibadulinova, A., Zavadova, Z., Knobeloch, K. P., Wiedenmann, B., Svoboda, J., Horak, I., & Pastorekova, S. (2002). Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9. Gastroenterology, 123, 1889–1903.
Article
CAS
PubMed
Google Scholar
Li, T., Liu, X., Riederer, B., Nikolovska, K., Singh, A. K., Makela, K. A., Seidler, A., Liu, Y., Gros, G., Bartels, H., Herzig, K. H., & Seidler, U. (2018). Genetic ablation of carbonic anhydrase IX disrupts gastric barrier function via claudin-18 downregulation and acid backflux. Acta Physiologica, 222, e12923.
Article
CAS
PubMed
Google Scholar
Tarnawski, A., Pai, R., Deng, X., Ahluwalia, A., Khomenko, T., Tanigawa, T., Akahoshi, T., Sandor, Z., & Szabo, S. (2007). Aging gastropathy-novel mechanisms: Hypoxia, up-regulation of multifunctional phosphatase PTEN, and proapoptotic factors. Gastroenterology, 133, 1938–1947.
Article
CAS
Google Scholar
Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4, 891–899.
Article
CAS
PubMed
Google Scholar
Wykoff, C. C., Beasley, N., Watson, P. H., Campo, L., Chia, S. K., English, R., Pastorek, J., Sly, W. S., Ratcliffe, P., & Harris, A. L. (2001). Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. American Journal of Pathology, 158, 1011–1019.
Article
CAS
PubMed
Google Scholar
Chiche, J., Ilc, K., Laferrière, J., Trottier, E., Dayan, F., Mazure, N. M., et al. (2009). Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Research, 69, 358–368.
Article
CAS
PubMed
Google Scholar
Parks, S. K., Cormerais, Y., Durivault, J., & Pouyssegur, J. (2017). Genetic disruption of the pHi-regulating proteins Na+/H+ exchanger 1 (SLC9A1) and carbonic anhydrase 9 severely reduces growth of colon cancer cells. Oncotarget, 8, 10225–10237.
Article
PubMed
Google Scholar
Pacchiano, F., Carta, F., McDonald, P. C., Lou, Y., Vullo, D., Scozzafava, A., Dedhar, S., & Supuran, C. T. (2011). Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. Journal of Medicinal Chemistry, 54, 1896–1902.
Article
CAS
PubMed
Google Scholar
Zatovicova, M., Jelenska, L., Hulikova, A., Ditte, P., Ditte, Z., Csaderova, L., Svastova, E., Schmalix, W., Boettger, V., Bevan, P., Pastorek, J., & Pastorekova, S. (2014). Monoclonal antibody G250 targeting CA IX: Binding specificity, internalization and therapeutic effects in a non-renal cancer model. International Journal of Oncology, 45, 2455–2467.
Article
CAS
PubMed
Google Scholar
Radvak, P., Repic, M., Svastova, E., Takacova, M., Csaderova, L., Strnad, H., et al. (2013). Suppression of carbonic anhydrase IX leads to aberrant focal adhesion and decreased invasion of tumor cells. Oncology Reports, 29, 1147–1153.
Article
CAS
PubMed
Google Scholar
Stock, C., & Schwab, A. (2009). Protons make tumor cells move like clockwork. Pflügers Archiv, 458, 981–992.
Article
CAS
PubMed
Google Scholar
Swayampakula, M., McDonald, P. C., Vallejo, M., Coyaud, E., Chafe, S. C., Westerback, A., Venkateswaran, G., Shankar, J., Gao, G., Laurent, E. M. N., Lou, Y., Bennewith, K. L., Supuran, C. T., Nabi, I. R., Raught, B., & Dedhar, S. (2017). The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene, 36, 6244–6261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiaschi, T., Giannoni, E., Taddei, M. L., Cirri, P., Marini, A., Pintus, G., Nativi, C., Richichi, B., Scozzafava, A., Carta, F., Torre, E., Supuran, C. T., & Chiarugi, P. (2013). Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle, 12, 1791–1801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedl, P., & Mayor, R. (2017). Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harbor Perspectives in Biology, 9, a029199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, Y., Wang, X. Y., Subjeck, J. R., & Kim, H. L. (2008). Carbonic anhydrase IX has chaperone-like functions and is an immunoadjuvant. Molecular Cancer Therapeutics, 7, 3867–3877.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosco, M. C., & Varesio, L. (2012). Dendritic cell reprogramming by the hypoxic environment. Immunobiology, 217, 1241–1249.
Article
CAS
PubMed
Google Scholar
Thews, O., & Riemann, A. (2019). Tumor pH and metastasis: A malignant process beyond hypoxia. Cancer Metastasis Reviews. https://doi.org/10.1007/s10555-018-09777-y.
Avnet, S., Di Pompo, G., Chano, T., Errani, C., Ibrahim-Hashim, A., Gillies, R. J., Donati, D. M., & Baldini, N. (2017). Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation. International Journal of Cancer, 140, 1331–1345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gkountela, S., Castro-Giner, F., Szczerba, B. M., Vetter, M., Landin, J., Scherrer, R., Krol, I., Scheidmann, M. C., Beisel, C., Stirnimann, C. U., Kurzeder, C., Heinzelmann-Schwarz, V., Rochlitz, C., Weber, W. P., & Aceto, N. (2019). Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell, 176, 98–112 e14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee, S., Shin, H. J., Han, I. O., Hong, E. K., Park, S. Y., Roh, J. W., Shin, K. H., Kim, T. H., & Kim, J. Y. (2007). Tumor carbonic anhydrase 9 expression is associated with the presence of lymph node metastases in uterine cervical cancer. Cancer Science, 98, 329–333.
Article
CAS
PubMed
Google Scholar
Tafreshi, N. K., Bui, M. M., Bishop, K., Lloyd, M. C., Enkemann, S. A., Lopez, A. S., Abrahams, D., Carter, B. W., Vagner, J., Grobmyer, S. R., Gillies, R. J., & Morse, D. L. (2012). Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes. Clinical Cancer Research, 18, 207–219.
Article
CAS
PubMed
Google Scholar
Ter Voert, E. G., Heijmen, L., de Wilt, J. H., Bussink, J., Punt, C. J., van Laarhoven, H. W., & Heerschap, A. (2013). Reproducibility and biological basis of in vivo T(2)* magnetic resonance imaging of liver metastasis of colorectal cancer. Magnetic Resonance in Medicine, 70, 1145–1152.
Article
PubMed
Google Scholar
Kim, H. M., Jung, W. H., & Koo, J. S. (2014). Site-specific metabolic phenotypes in metastatic breast cancer. Journal of Translational Medicine, 12, 354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chafe, S. C., Lou, Y., Sceneay, J., Vallejo, M., Hamilton, M. J., McDonald, P. C., Bennewith, K. L., Möller, A., & Dedhar, S. (2015). Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Research, 75, 996–1008.
Article
CAS
PubMed
Google Scholar
Ledaki, I., McIntyre, A., Wigfield, S., Buffa, F., McGowan, S., Baban, D., Li, J. L., & Harris, A. L. (2015). Carbonic anhydrase IX induction defines a heterogeneous cancer cell response to hypoxia and mediates stem cell-like properties and sensitivity to HDAC inhibition. Oncotarget, 6, 19413–19427.
Article
PubMed
PubMed Central
Google Scholar
Marie-Egyptienne, D. T., Chaudary, N., Kalliomäki, T., Hedley, D. W., & Hill, R. P. (2017). Cancer initiating-cells are enriched in the CA9 positive fraction of primary cervix cancer xenografts. Oncotarget, 8, 1392–1404.
Article
PubMed
Google Scholar
Pastorek, J., & Pastorekova, S. (2015). Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: From biology to clinical use. Seminars in Cancer Biology, 31, 52–64.
Article
CAS
PubMed
Google Scholar
Wiesener, M. S., Münchenhagen, P. M., Berger, I., Morgan, N. V., Roigas, J., Schwiertz, A., et al. (2001). Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Research, 61, 5215–5222.
CAS
PubMed
Google Scholar
Bui, M. H., Seligson, D., Han, K. R., Pantuck, A. J., Dorey, F. J., Huang, Y., et al. (2003). Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: Implications for prognosis and therapy. Clinical Cancer Research, 9, 802–811.
CAS
PubMed
Google Scholar
Rademakers, S. E., Lok, J., van der Kogel, A. J., Bussink, J., & Kaanders, J. H. (2011). Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer, 11, 167.
Article
PubMed
PubMed Central
Google Scholar
Brockton, N., Dort, J., Lau, H., Hao, D., Brar, S., Klimowicz, A., Petrillo, S., Diaz, R., Doll, C., & Magliocco, A. (2011). High stromal carbonic anhydrase IX expression is associated with decreased survival in P16-negative head-and-neck tumors. International Journal of Radiation Oncology, Biology, Physics, 80, 249–257.
Article
CAS
PubMed
Google Scholar
Wind, T. C., Messenger, M. P., Thompson, D., Selby, P. J., & Banks, R. E. (2011). Measuring carbonic anhydrase IX as a hypoxia biomarker: Differences in concentrations in serum and plasma using a commercial enzyme-linked immunosorbent assay due to influences of metal ions. Annals of Clinical Biochemistry, 48, 112–120.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Kuijk, S. J., Yaromina, A., Houben, R., Niemans, R., Lambin, P., & Dubois, L. J. Prognostic significance of carbonic anhydrase IX expression in cancer patients: A meta-analysis. Frontiers in Oncology, 6, 69.
Pastoreková, S., Závadová, Z., Kostál, M., Babusíková, O., & Závada, J. (1992). A novel quasi-viral agent, MaTu, is a two-component system. Virology, 187, 620–626.
Article
PubMed
Google Scholar
Závada, J., Závadová, Z., Pastorek, J., Biesová, Z., Jezek, J., & Velek, J. (2000). Human tumour-associated cell adhesion protein MN/CA IX: Identification of M75 epitope and of the region mediating cell adhesion. British Journal of Cancer, 82, 1808–1813.
Article
PubMed
PubMed Central
Google Scholar
Grabmaier, K., Vissers, J. L., De Weijert, M. C., Oosterwijk-Wakka, J. C., Van Bokhoven, A., Brakenhoff, R. H., Noessner, E., Mulders, P. A., Merkx, G., Figdor, C. G., Adema, G. J., & Oosterwijk, E. (2000). Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. International Journal of Cancer, 85, 865–870.
Article
CAS
PubMed
Google Scholar
Zatovicová, M., Tarábková, K., Svastová, E., Gibadulinová, A., Mucha, V., Jakubícková, L., Biesová, Z., Rafajová, M., Ortova Gut, M., Parkkila, S., Parkkila, A. K., Waheed, A., Sly, W. S., Horak, I., Pastorek, J., & Pastoreková, S. (2003). Monoclonal antibodies generated in carbonic anhydrase IX-deficient mice recognize different domains of tumour-associated hypoxia-induced carbonic anhydrase IX. Journal of Immunological Methods, 282, 117–134.
Article
CAS
Google Scholar
Murri-Plesko, M. T., Hulikova, A., Oosterwijk, E., Scott, A. M., Zortea, A., Harris, A. L., et al. (2011). Antibody inhibiting enzymatic activity of tumour-associated carbonic anhydrase isoform IX. European Journal of Pharmacology, 657, 173–183.
Article
CAS
PubMed
Google Scholar
Divgi, C. R., Pandit-Taskar, N., Jungbluth, A. A., Reuter, V. E., Gönen, M., Ruan, S., Pierre, C., Nagel, A., Pryma, D. A., Humm, J., Larson, S. M., Old, L. J., & Russo, P. (2007). Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: A phase I trial. Lancet Oncology, 8, 304–310.
Article
CAS
PubMed
Google Scholar
Oosterwijk-Wakka, J. C., Boerman, O. C., Mulders, P. F., & Oosterwijk, E. (2013). Application of monoclonal antibody G250 recognizing carbonic anhydrase IX in renal cell carcinoma. International Journal of Molecular Sciences, 14, 11402–11423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hekman, M. C. H., Rijpkema, M., Aarntzen, E. H., Mulder, S. F., Langenhuijsen, J. F., Oosterwijk, E., Boerman, O. C., Oyen, W. J. G., & Mulders, P. F. A. (2018). Positron emission tomography/computed tomography with (89)Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. European Urology, 74, 257–260.
Article
PubMed
Google Scholar
Ahlskog, J. K., Schliemann, C., Mårlind, J., Qureshi, U., Ammar, A., Pedley, R. B., & Neri, D. (2009). Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. British Journal of Cancer, 101, 645–657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, Y., Wang, H., Oosterwijk, E., Selman, Y., Mira, J. C., Medrano, T., Shiverick, K. T., & Frost, S. C. (2009). Antibody-specific detection of CAIX in breast and prostate cancers. Biochemical and Biophysical Research Communications, 386, 488–492.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iikuni, S., Ono, M., Watanabe, H., Shimizu, Y., Sano, K., & Saji, H. (2018). Cancer radiotheranostics targeting carbonic anhydrase-IX with (111)In- and (90)Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics, 8, 2992–3006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv, P. C., Putt, K. S., & Low, P. S. (2016). Evaluation of nonpeptidic ligand conjugates for SPECT imaging of hypoxic and carbonic anhydrase IX-expressing cancers. Bioconjugate Chemistry, 27, 1762–1769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peeters, S. G., Dubois, L., Lieuwes, N. G., Laan, D., Mooijer, M., Schuit, R. C., et al. (2015). [(18)F]VM4-037 MicroPET imaging and biodistribution of two in vivo CAIX-expressing tumor models. Molecular Imaging and Biology, 17, 615–619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang, X., Minn, I., Rowe, S. P., Banerjee, S. R., Gorin, M. A., Brummet, M., et al. (2015). Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor. Oncotarget, 6, 33733–33742.
PubMed
PubMed Central
Google Scholar
Nocentini, A., & Supuran, C. T. (2018). Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: A patent review (2008-2018). Expert Opinion on Therapeutic Patents, 28, 729–740.
Article
CAS
PubMed
Google Scholar
Neri, D., & Supuran, C. T. (2011). Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews Drug Discovery, 10, 767–777.
Article
CAS
PubMed
Google Scholar
Lock, F. E., McDonald, P. C., Lou, Y., Serrano, I., Chafe, S. C., Ostlund, C., Aparicio, S., Winum, J. Y., Supuran, C. T., & Dedhar, S. (2013). Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene, 32, 5210–5209.
Article
CAS
PubMed
Google Scholar
Parkkila, S., Innocenti, A., Kallio, H., Hilvo, M., Scozzafav, A., & Supuran, C. T. (2009). The protein tyrosine kinase inhibitors imanitib and nilotinib strongly inhibit several mammalian alpha-carbonic anhydrase isoforms. Bioorganic & Medicinal Chemistry Letters, 19, 4102–4106.
Article
CAS
Google Scholar
McIntyre, A., Patiar, S., Wigfield, S., Li, J. L., Ledaki, I., Turley, H., Leek, R., Snell, C., Gatter, K., Sly, W. S., Vaughan-Jones, R. D., Swietach, P., & Harris, A. L. (2012). Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clinical Cancer Research, 18, 3100–3011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubois, L., Peeters, S. G., van Kuijk, S. J., Yaromina, A., Lieuwes, N. G., Saraya, R., Biemans, R., Rami, M., Parvathaneni, N. K., Vullo, D., Vooijs, M., Supuran, C. T., Winum, J. Y., & Lambin, P. (2013). Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: A new concept of dual targeting drugs. Radiotherapy and Oncology, 108, 523–528.
Article
CAS
PubMed
Google Scholar
Chamie, K., Klöpfer, P., Bevan, P., Störkel, S., Said, J., Fall, B., Belldegrun, A. S., & Pantuck, A. J. (2015). Carbonic anhydrase-IX score is a novel biomarker that predicts recurrence and survival for high-risk, nonmetastatic renal cell carcinoma: Data from the phase III ARISER clinical trial. Urologic Oncology, 33(204), e25–e33.
Google Scholar
Petrul, H. M., Schatz, C. A., Kopitz, C. C., Adnane, L., McCabe, T. J., Trail, P., Ha, S., Chang, Y. S., Voznesensky, A., Ranges, G., & Tamburini, P. P. (2012). Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Molecular Cancer Therapeutics, 11, 340–349.
Article
CAS
PubMed
Google Scholar
Ward, C., Meehan, J., Gray, M., Kunkler, I. H., Langdon, S. P., & Argyle, D. J. (2018). Carbonic anhydrase IX (CAIX), cancer, and radiation responsiveness. Metabolites, 8, E13.
Article
CAS
PubMed
Google Scholar
Faiena, I., Zomorodian, N., Camin Anduix, B., Sachdeva, A., Bot, A., Kabinnavar, F., Said, J., Cheung-Lau, G., Macabali, M., Cabrera, P., Kaplan-Lefko, P., Berent-Maoz, B., Pantuck, A. J., Belldegrun, A. S., & Drakaki, A. (2018). A pahe I, open label, dose escalation and cohort expansion study to evaluate the safety and immune response to autologous dendritic cells transduced with AdGMCA9 in patients with metastatic renal cell carcinoma. Kidney Cancer, 2, I-S50.
Google Scholar