Skip to main content

Carbonic Anhydrase IX: From Biology to Therapy

  • Chapter
  • First Online:
Hypoxia and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Growing tumor tissues develop a stressful microenvironment characterized by hypoxia and acidosis. Tumor cells can survive these stresses via induction of adaptive transcriptional changes mediated primarily by the hypoxia-inducible factor (HIF), and via stimulation of ion transport machinery maintaining normal intracellular pH. In addition, through these adaptive responses tumor cells acquire new features endowing them with selective advantage in migration, invasion, metastasis, and resistance to therapy. Carbonic anhydrase IX (CA IX), a highly active cancer-related carbonic anhydrase isoform, is linked to both hypoxia, as a direct transcriptional target of HIF, and acidosis, as a component of mechanisms that facilitate ion transport across the plasma membrane and thereby counteract the intracellular accumulation of acidic metabolic products. Expression pattern of CA IX in human tumors reflects the activation of the HIF pathway by physiologic hypoxia, genetic defects, and/or oncogenic events. Moreover, CA IX plays an active role not only in pH regulation but also in cell migration and invasion. Thus, it is often exploited and/or investigated as an intrinsic marker of hypoxia, a prognostic indicator, and a therapeutic target for antibodies or inhibitors of the enzyme activity. It is believed that these CA IX-targeted therapeutic approaches can mediate the selective killing of CA IX-positive cells or sensitize tumor cells to conventional treatment modalities. In addition, both CA IX-specific antibodies and CA IX-selective inhibitors can serve as imaging tools allowing for selection of patients potentially benefiting from CA IX-directed therapy. Recent advances in understanding CA IX regulation and functional involvement in tumor progression as well as development of CA IX-binding drugs provide novel opportunities for treatment of hypoxic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CA IX:

carbonic anhydrase IX protein

CA9:

carbonic anhydrase 9 gene/promoter

CAI:

carbonic anhydrase inhibitor

Car:

mouse CA gene

FIH:

factor inhibiting HIF

GLUT:

glucose transporter

HIF:

hypoxia-inducible factor

HRE:

hypoxia-response element

LDH:

lactate dehydrogenase

MAPK:

mitogen activated protein kinase

MCT:

monocarboxylate transporter

NBC:

Na + /bicarbonate co-transporter

NHE:

Na + /H + exchanger

PDK:

pyruvate dehydrogenase kinase

PG:

proteoglycan-like domain

PHD:

prolyl hydroxylase

pHe:

extracellular pH

pHi:

intracellular pH

PI3K:

phosphatidyl inositol-3 kinase

RCC:

renal cell carcinoma

VEGF:

vascular endothelial growth factor

VHL:

von Hippel Lindau

References

  • Abbate F, Casini A, Owa T et al (2004) Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorg Med Chem Lett 14:225–229

    Google Scholar 

  • Ahlskog JK, Schliemann C, Mårlind J et al (2009) Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours. Br J Cancer 101:645–657

    PubMed  CAS  Google Scholar 

  • Airley RE, Loncaster J, Raleigh JA et al (2003) GLUT-1 and CA IX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 104:85–91

    PubMed  CAS  Google Scholar 

  • Almajan GL, Innocenti A, Pucetti L et al (2005) Carbonic anhydrase inibitors: inhibition of the cytosolic and tumor-associated carbonic anhydrase isozymes I, II and IX with a series of 1,3,4-thiadiazole- and 1,2,4-triazole-thiols. Bioorg Med Chem Lett 15:2347–2352

    PubMed  CAS  Google Scholar 

  • Alterio V, Hilvo M, Di FA (2009) Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A 106:16233–16238

    PubMed  CAS  Google Scholar 

  • Ashida S, Nishimori I, Tanimura M et al (2002) Effects of von Hippel-Lindau gene mutation and methylation status on expression of transmembrane carbonic anhydrases in renal cell carcinoma. J Cancer Res Clin Oncol 128:561–568

    PubMed  CAS  Google Scholar 

  • Askoxylakis V, Garcia-Boy R, Rana S et al (2010) A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology. PLoS One 5(12):e15962. doi: 10.1371/journal.pone.0015962.

    PubMed  CAS  Google Scholar 

  • Askoxylakis V, Ehemann V, Rana S et al (2012) Binding of the phage display derived peptide CaIX – P1 on human colorectal carcinoma cells correlates with the expression of carbonic anhydrase IX. Int J Mol Sci 13:13030–13048

    PubMed  CAS  Google Scholar 

  • Aspatwar A, Tolvanen ME, Ortutay C et al (2010) Carbonic anhydrase related protein VIII and its role in neurodegeneration and cancer. Curr Pharm Des 16:3264–3276

    PubMed  CAS  Google Scholar 

  • Atkins M, Regan M, McDermott D et al (2005) Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res 11:3714–3721

    PubMed  CAS  Google Scholar 

  • Bache M, Reddemann R, Said HM (2006) Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1alpha-related markers, and hemoglobin levels. Int J Radiat Oncol Biol Phys 66:1481–1487

    PubMed  CAS  Google Scholar 

  • Barathova M, Takacova M, Holotnakova T et al (2008) Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype. Br J Cancer 98:129–136

    PubMed  CAS  Google Scholar 

  • Barnea G, Grumet M, Milev P et al (1994) Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin. J Biol Chem 269:14349–14352

    PubMed  CAS  Google Scholar 

  • Bartosova M, Parkkila S, Pohlodek K et al (2002) Expression of carbonic anhydrase IX in breast is associated with malignant tissues and related to overexpression of c-erbB2. J Pathol 197:1–8

    Google Scholar 

  • Beasley NJP, Wykoff CC, Watson PH et al (2001) Carbonic anhydrase IX, an endogenous hypoxia marker, expression in head and neck squamous cell carcinoma and its relationship to hypoxia, necrosis and microvessel density. Cancer Res 61:5262–5267

    PubMed  CAS  Google Scholar 

  • Brahimi-Horn MC, Pouysségur J (2007) Hypoxia in cancer cell metabolism and pH regulation. Essays Biochem 43:165–178

    PubMed  CAS  Google Scholar 

  • Brennan DJ, Jirstrom K, Kronblad A et al (2006) CA IX is an independent prognostic marker in premenopausal breast cancer patients with one to three positive lymph nodes and a putative marker of radiation resistance. Clin Cancer Res 12:6421–6431

    PubMed  CAS  Google Scholar 

  • Brouwers AH, Frielink C, Oosterwijk E et al (2003) Interferons can upregulate the expression of the tumor associated antigen G250-MN/CA IX, a potential target for (radio)immunotherapy of renal cell carcinoma. Cancer Biother Radiopharm 18:539–547

    PubMed  CAS  Google Scholar 

  • Buanne P, Renzone G, Monteleone F et al (2013) Characterization of carbonic anhydrase IX interactome reveals proteins assisting its nuclear localization in hypoxic cells. J Proteome Res 12:282–292

    PubMed  CAS  Google Scholar 

  • Bui MH, Seligson D, Han KR et al (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9:802–811

    PubMed  CAS  Google Scholar 

  • Bui MH, Visapaa H, Seligson D et al (2004) Prognostic value of carbonic anhydrase IX and Ki67 as predictors of survival for renal clear cell carcinoma. J Urol 171:2461–2466

    PubMed  Google Scholar 

  • Buller F, Steiner M, Frey K et al (2011) Selection of carbonic anhydrase IX inhibitors from one million DNA-encoded compounds. ACS Chem Biol 6:336–344

    PubMed  CAS  Google Scholar 

  • Carta F, Maresca A, Scozzafava A et al (2012) Novel coumarins and 2-thioxo-coumarins as inhibitors of the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 20:2266–2273

    PubMed  CAS  Google Scholar 

  • Casey JR, Morgan PE, Vullo D et al (2004) Carbonic anhydrase inhibitors. Design of selective, membrane-impermeant inhibitors targeting the human tumor-associated isozyme IX. J Med Chem 47:2337–2347

    PubMed  CAS  Google Scholar 

  • Cecchi A, Winum JY, Innocenti A et al (2004) Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor associated carbonic anhydrase isozymes I, II, and IX with sulfonamides derived from 4-isothiocyanato-benzolamide. Bioorg Med Chem Lett 14:5775–5780

    PubMed  CAS  Google Scholar 

  • Cecchi A, Hulikova A, Pastorek J et al (2005) Carbonic anhydrase inhibitors. Design of fluorescent sulfonamides as probes of tumor-associated carbonic anhydrase IX that inhibit isozyme IX-mediated acidification of hypoxic tumors. J Med Chem 48:4834–4841

    PubMed  CAS  Google Scholar 

  • Chia SK, Wykoff CC, Watson PH et al (2001) Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 19:3660–3668

    PubMed  CAS  Google Scholar 

  • Chiang WL, Chu SC, Yang SS et al (2002) The aberrant expression of cytosolic carbonic anhydrase and its clinical significance in human non-small cell lung cancer. Cancer Lett 188:199–205

    PubMed  CAS  Google Scholar 

  • Chiche J, Ilc K, Laferrière J et al (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368

    PubMed  CAS  Google Scholar 

  • Chien MH, Ying TH, Hsieh YH et al (2012) Tumor-associated carbonic anhydrase XII is linked to the growth of primary oral squamous cell carcinoma and its poor prognosis. Oral Oncol 48:417–423

    PubMed  CAS  Google Scholar 

  • Cho M, Grabmaier K, Kitahori Y et al (2000) Activation of the MN/CA9 gene is associated with hypomethylation in human renal cell carcinoma cell lines. Mol Carcinog 27:184–189

    PubMed  CAS  Google Scholar 

  • Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–72

    PubMed  CAS  Google Scholar 

  • Davis ID, Wiseman GA, Lee FT et al (2007) A phase I multiple dose, dose escalation study of cG250 monoclonal antibody in patients with advanced renal cell carcinoma. Cancer Immun 17(7):13

    Google Scholar 

  • Ditte P, Dequiedt F, Svastova E et al (2011) Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res 71:7558–7567

    PubMed  CAS  Google Scholar 

  • Divgi CR, Pandit-Taskar N, Jungbluth AA et al (2007) Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8:304–310

    PubMed  CAS  Google Scholar 

  • Dogné JM, Thiry A, Pratico D et al (2007) Dual carbonic anhydrase–cyclooxygenase-2 inhibitors. Curr Top Med Chem 7:885–891

    PubMed  Google Scholar 

  • Dorai T, Sawczuk IS, Pastorek J et al (2005) The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer 41:2935–2947

    PubMed  CAS  Google Scholar 

  • Doyen J, Parks SK, Marcié S et al (2012) Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis. Front Oncol 2:199. doi:10.3389/fonc.2012.00199.

    PubMed  Google Scholar 

  • Dubois L, Douma K, Supuran CT et al (2007) Imaging the hypoxia surrogate marker CA IX requires expression and catalytic activity for binding fluorescent sulfonamide inhibitors. Radiother Oncol 83:367–373

    PubMed  CAS  Google Scholar 

  • Dubois L, Lieuwes NG, Maresca A et al (2009) Imaging of CA IX with fluorescent labelled sulfonamides distinguishes hypoxic and (re)-oxygenated cells in a xenograft tumour model. Radiother Oncol 92:423–428

    PubMed  CAS  Google Scholar 

  • Dubois L, Peeters S, Lieuwes NG et al (2011) Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiother Oncol 99:424–431

    PubMed  CAS  Google Scholar 

  • Durdagi S, Şentürk M, Ekinci D et al (2011) Kinetic and docking studies of phenol-based inhibitors of carbonic anhydrase isoforms I, II, IX and XII evidence a new binding mode within the enzyme active site. Bioorg Med Chem 19:1381–1389

    PubMed  CAS  Google Scholar 

  • Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18:330–337

    PubMed  CAS  Google Scholar 

  • Franchi M, Vullo D, Gallori E et al (2003) Carbonic anhydrase inhibitors. Inhibition of cytosolic isozymes I and II and transmembrane, cancer-associated isozyme IX with lipophilic sulfonamides. J Enzyme Inhib Med Chem 18:333–338

    PubMed  CAS  Google Scholar 

  • Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    PubMed  CAS  Google Scholar 

  • Garaj V, Pucetti L, Fasolis G et al (2004) Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides incorporating 1,2,4-triazine moieties. Bioorg Med Chem Lett 14:5427–5433

    PubMed  CAS  Google Scholar 

  • Garaj V, Pucetti L, Fasolis G et al (2005) Carbonic anhydrase inhibitors: novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of cytosolic and tumor-associated carbonic anhydrase isozymes I, II, and IX. Bioorg Med Chem Lett 15:3102–3108

    PubMed  CAS  Google Scholar 

  • Generali D, Fox SB, Berruti A et al (2006) Role of carbonic anhydrase IX expression in prediction of the efficacy and outcome of primary epirubicin/tamoxifen therapy for breast cancer. Endocr Relat Cancer 13:921–930

    PubMed  CAS  Google Scholar 

  • Giatromanolaki A, Koukourakis MI, Sivridis E et al (2001) Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Res 61:7992–7998

    PubMed  CAS  Google Scholar 

  • Gieling RG, Babur M, Mamnani L (2012) Antimetastatic effect of sulfamate carbonic anhydrase IX inhibitors in breast carcinoma xenografts. J Med Chem 55:5591–5600

    PubMed  CAS  Google Scholar 

  • Gieling RG, Parker CA, De Costa LA et al (2013) Inhibition of carbonic anhydrase activity modifies the toxicity of doxorubicin and melphalan in tumour cells in vitro. J Enzyme Inhib Med Chem 28:360–369

    PubMed  Google Scholar 

  • Gnarra JR, Tory K, Weng Y et al (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7:85–90

    PubMed  CAS  Google Scholar 

  • Grabmaier K, A de Weijert MC, Verhaegh GW et al (2004) Strict regulation of CA IX(G250/MN) by HIF-1alpha in clear cell renal cell carcinoma. Oncogene 23:5624–5631

    PubMed  CAS  Google Scholar 

  • Gut MO, Parkkila S, Vernerová Z et al (2002) Gastric hyperplasia in mice with targeted disruption of the carbonic anhydrase gene Car9. Gastroenterology 123:1889–1903

    PubMed  CAS  Google Scholar 

  • Haapasalo J, Nordfors K, Hilvo M et al (2005) Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin. Cancer Res 12:473–477

    Google Scholar 

  • Haapasalo J, Nordfors K, Järvelä S et al (2007) Carbonic anhydrase II in the endothelium of glial tumors: a potential target for therapy. Neuro Oncol 9:308–313

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia – a key regulatory factor in tumor growth. Nature Rev Cancer 2:38–47

    CAS  Google Scholar 

  • Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698

    PubMed  CAS  Google Scholar 

  • Helmlinger G, Sckell A, Dellian M et al (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8:1284–1291

    PubMed  CAS  Google Scholar 

  • Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol 5:50–77

    PubMed  CAS  Google Scholar 

  • Hilvo M, Baranauskiene L, Salzano AM (2008) Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 283:27799–27809

    PubMed  CAS  Google Scholar 

  • Hui EP, Chan AT, Pezzella F et al (2002) Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 8:2595–2504

    PubMed  CAS  Google Scholar 

  • Hulikova A, Vaughan-Jones RD, Swietach P (2011) Dual role of CO2/HCO3(-) buffer in the regulation of intracellular pH of three-dimensional tumor growths. J Biol Chem 286:13815–13826

    PubMed  CAS  Google Scholar 

  • Hussain SA, Ganesan R, Reynolds G et al (2007) Hypoxia-regulated carbonic anhydrase IX expression is associated with poor survival in patients with invasive breast cancer. Br J Cancer 96:104–109

    PubMed  CAS  Google Scholar 

  • Hutchison GJ, Valentine HR, Loncaster JA et al (2004) Hypoxia-inducible factor 1alpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res 10:8405–8412

    PubMed  CAS  Google Scholar 

  • Hynninen P, Hamalainen JM, Pastorekova S et al (2004) Transmembrane carbonic anhydrase isozymes IX and XII in the female mouse reproductive tract. Reprod Biol Endocrinol 2:73

    PubMed  Google Scholar 

  • Hynninen P, Vaskivuo L, Saarnio J et al (2006) Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours. Histopathology 49:594–602

    PubMed  CAS  Google Scholar 

  • Iakovlev VV, Pintilie M, Morrison A et al (2007) Effect of distributional heterogeneity on the analysis of tumor hypoxia based on carbonic anhydrase IX. Lab Invest 87:1206–1217

    PubMed  CAS  Google Scholar 

  • Ihnatko R, Kubes M, Takacova M et al (2006) Extracellular acidosis elevates carbonic anhydrase IX in human glioblastoma cells via transcriptional modulation that does not depend on hypoxia. Int J Oncol 29:1925–1933

    Google Scholar 

  • Ilie M, Mazure NM, Hofman V (2010) High levels of carbonic anhydrase IX in tumour tissue and plasma are biomarkers of poor prognostic in patients with non-small cell lung cancer. Br J Cancer 102:1627–1635

    PubMed  CAS  Google Scholar 

  • Ilie MI, Hofman V, Ortholan C (2011) Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. Int J Cancer 128:1614–1623

    PubMed  CAS  Google Scholar 

  • Ilies MA, Vullo D, Pastorek J et al (2003) Carbonic anhydrase inhibitors. Inhibition of tumor-associated isozyme IX by halogenosulfanilamide and halogenophenylaminobenzolamide derivatives. J Med Chem 46:2187–2196

    PubMed  CAS  Google Scholar 

  • Innocenti A, Vullo D, Scozzafava A et al (2005) Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with carboxylates. Bioorg Med Chem Lett 15:573–578

    PubMed  CAS  Google Scholar 

  • Ivanov SV, Kuzmin I, Wei MH et al (1998) Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA 95:12596–12601

    PubMed  CAS  Google Scholar 

  • Ivanov S, Liao SY, Ivanova A et al (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    PubMed  CAS  Google Scholar 

  • Jaiswal M, Khadikar PV, Scozzafava A et al (2004) Carbonic anhydrase inhibitors: the first QSAR study on inhibition of tumor-associated isoenzyme IX with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Lett 14:3283–3290

    PubMed  CAS  Google Scholar 

  • Jakubickova L, Biesova Z, Pastorekova S et al (2005) Methylation of the CA9 promoter can modulate expression of the tumor-associated carbonic anhydrase IX in dense carcinoma cell lines. Int J Oncol 26:1121–1127

    PubMed  CAS  Google Scholar 

  • Jarvela S, Parkkila S, Bragge H et al (2008) Carbonic anhydrase IX in oligodendroglial brain tumors. BMC Cancer 8:1

    PubMed  Google Scholar 

  • Kallio H, Hilvo M, Rodriguez A et al (2010) Global transcriptional response to carbonic anhydrase IX deficiency in the mouse stomach. BMC Genomics 11:397. doi:10.1186/1471–2164-11-397

    PubMed  Google Scholar 

  • Kaluz S, Kaluzova M, Chrastina A et al (2002) Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1α stabilization : a role for phosphatidylinositol 3’-kinase. Cancer Res 62:4469–4477

    PubMed  CAS  Google Scholar 

  • Kaluz S, Kaluzova M, Stanbridge EJ (2003) Expression of the hypoxia marker carbonic anhydrase IX is critically dependent on SP1 activity. Identification of a novel type of hypoxia-responsive enhancer. Cancer Res 63:917–922

    PubMed  CAS  Google Scholar 

  • Kappler M, Taubert H, Holzhausen HJ et al (2008) Immunohistochemical detection of HIF-1alpha and CAIX in advanced head-and-neck cancer. Prognostic role and correlation with tumor markers and tumor oxygenation parameters. Strahlenther Onkol 184:393–399

    PubMed  Google Scholar 

  • Karhumaa P, Kaunisto K, Parkkila S et al (2001) Expression of the transmembrane carbonic anhydrases, CA IX and CA XII, in the human male excurrent ducts. Mol Hum Reprod 7:611–616

    PubMed  CAS  Google Scholar 

  • Karumanchi SA, Jiang L, Knebelmann B et al (2001) VHL tumor suppressor regulates Cl-/HCO3- exchange and Na+/H+ exchange activities in renal carcinoma cells. Physiol Genomics 5:119–128

    PubMed  CAS  Google Scholar 

  • Ki DH, Jeung HC, Park CH et al (2007) Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int J Cancer 121:2005–2012

    PubMed  CAS  Google Scholar 

  • Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    PubMed  CAS  Google Scholar 

  • Kim SJ, Rabbani ZN, Dewhirst MW et al (2005) Expression of HIF-1alpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer 49:325–335

    PubMed  Google Scholar 

  • Kim JY, Shin HJ, Kim TH et al (2006) Tumor-associated carbonic anhydrases are linked to metastases in primary cervical cancer. J Cancer Res Clin Oncol 132:302–308

    PubMed  CAS  Google Scholar 

  • Kim SJ, Shin HJ, Jung KY et al (2007) Prognostic value of carbonic anhydrase IX and Ki-67 expression in squamous cell carcinoma of the tongue. Jpn J Clin Oncol 37:812–819

    PubMed  Google Scholar 

  • Kim BR, Shin HJ, Kim JY et al (2012) Dickkopf-1 (DKK-1) interrupts FAK/PI3K/mTOR pathway by interaction of carbonic anhydrase IX (CA9) in tumorigenesis. Cell Signal 24:1406–1413

    PubMed  CAS  Google Scholar 

  • Kivelä A, Parkkila S, Saarnio J et al (2000) Expression of a novel transmembrane carbonic anhydrase isozyme XII in normal human gut and colorectal tumors. Am J Pathol 156:577–584

    PubMed  Google Scholar 

  • Kivela AJ, Saarnio J, Karttunen TJ et al (2001) Differential expression of cytoplasmic carbonic anhydrases, CA I and II, and membrane-associated isozymes, CA IX and XII, in normal mucosa of large intestine and in colorectal tumors. Dig Dis Sci 46:2179–2186

    PubMed  CAS  Google Scholar 

  • Klein M, Seeger P, Schuricht B et al (2000) Polarization of Na(+)/H(+) and Cl(−)/HCO (3)(−) exchangers in migrating renal epithelial cells. J Gen Physiol 115:599–608

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Matsumoto T, Ryuge S et al (2012) CAXII Is a sero-diagnostic marker for lung cancer. PLoS One 7(3):e33952. doi:10.1371/journal.pone.0033952

    PubMed  CAS  Google Scholar 

  • Kock L, Mahner S, Choschzick M et al (2011) Serum carbonic anhydrase IX and its prognostic relevance in vulvar cancer. Int J Gynecol Cancer 21:141–148

    PubMed  Google Scholar 

  • Kon-no H, Ishii G, Nagai K et al (2006) Carbonic anhydrase IX expression is associated with tumor progression and a poor prognosis of lung adenocarcinoma. Lung Cancer 54:409–418

    PubMed  Google Scholar 

  • Kopacek J, Barathova M, Dequiedt F et al (2005) MAPK pathway contributes to density- and hypoxia-induced expression of the tumor-associated carbonic anhydrase IX. Biochim Biophys Acta 1729:41–49

    Google Scholar 

  • Koperek O, Bergner O, Pichlhöfer B et al (2011) Expression of hypoxia-associated proteins in sporadic medullary thyroid cancer is associated with desmoplastic stroma reaction and lymph node metastasis and may indicate somatic mutations in the VHL gene. J Pathol 225:63–72

    PubMed  CAS  Google Scholar 

  • Korkolopoulou P, Perdiki M, Thymara I (2007) Expression of hypoxia-related tissue factors in astrocytic gliomas. A multivariate survival study with emphasis upon carbonic anhydrase IX. Hum Pathol 38:629–638

    PubMed  CAS  Google Scholar 

  • Kowalewska M, Radziszewski J, Kulik J et al (2005) Detection of carbonic anhydrase 9-expressing tumor cells in the lymph nodes of vulvar carcinoma patients by RT-PCR. Int J Cancer 116:957–962

    PubMed  CAS  Google Scholar 

  • Kozin SV, Shkarin P, Gerweck LE (2001) The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics. Cancer Res 61:4740–4743

    PubMed  CAS  Google Scholar 

  • Kummola L, Hamalainen JM, Kivela J et al (2005) Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa. BMC Cancer 5:41

    PubMed  Google Scholar 

  • Kuo WH, Chiang WL, Yang SF et al (2003) The differential expression of cytosolic carbonic anhydrase in human hepatocellular carcinoma. Life Sci 73:2211–2223

    PubMed  CAS  Google Scholar 

  • Le QT, Chen E, Salim A et al (2006) An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 12:1507–1514

    PubMed  CAS  Google Scholar 

  • Le QT, Kong C, Lavori PW et al (2007) Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 69:167–175

    PubMed  CAS  Google Scholar 

  • Leppilampi M, Karttunen TJ, Kivelä J et al (2005) Gastric pit cell hyperplasia and glandular atrophy in carbonic anhydrase IX knockout mice: studies on two strains C57/BL6 and BALB/C. Transgenic Res 14:655–663

    PubMed  CAS  Google Scholar 

  • Liao SY, Brewer C, Zavada J et al (1994) Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am J Pathol 145:598–609

    PubMed  CAS  Google Scholar 

  • Liao SY, Aurelio ON, Jan K et al (1997) Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. Cancer Res 57:2827–2831

    PubMed  CAS  Google Scholar 

  • Loncaster JA, Harris AL, Davidson SE et al (2001) Carbonic anhydrase IX expression, a potential new intrinsic marker of hypoxia: correlations with tumour oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61:6394–6399

    PubMed  CAS  Google Scholar 

  • Lou Y, McDonald PC, Oloumi A et al (2011) Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res 71:3364–3376

    PubMed  CAS  Google Scholar 

  • Lounnas N, Rosilio C, Nebout M et al (2013) Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Lett doi:pii: S0304–3835(13)00049-9

    Google Scholar 

  • Luiten RM, Coney LR, Fleuren GJ et al (1996) Generation of chimeric bispecific G250/anti-CD3 monoclonal antibody, a tool to combat renal cell carcinoma. Brit J Cancer 74:735–744

    PubMed  CAS  Google Scholar 

  • Luiten RM, Warnaar SO, Schuurman J et al (1997) Chimeric immunoglobulin E reactive with tumor-associated antigen activates human Fc epsilon RI bearing cells. Hum Antibodies 8:169–180

    PubMed  CAS  Google Scholar 

  • Malentacchi F, Simi L, Nannelli C et al (2009) Alternative splicing variants of carbonic anhydrase IX in human non-small cell lung cancer. Lung Cancer 64:271–276

    PubMed  Google Scholar 

  • Malentacchi F, Vinci S, Della MA (2012) Splicing variants of carbonic anhydrase IX in bladder cancer and urine sediments. Urol Oncol 30:278–284

    PubMed  CAS  Google Scholar 

  • Mandriota SJ, Turner KJ, Davies DR et al (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1:459–468

    PubMed  CAS  Google Scholar 

  • Maresca A, Supuran CT (2010) Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg Med Chem Lett 20:4511–4514

    PubMed  CAS  Google Scholar 

  • Maresca A, Scozzafava A, Supuran CT (2010) 7,8-disubstituted- but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg Med Chem Lett 20:7255–7258

    PubMed  CAS  Google Scholar 

  • Martin C, Pedersen SF, Schwab A et al (2011) Intracellular pH gradients in migrating cells. Am J Physiol Cell Physiol 300:C490–C495

    PubMed  CAS  Google Scholar 

  • McIntyre A, Patiar S, Wigfield S et al (2012) Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res 18:3100–3111

    PubMed  CAS  Google Scholar 

  • McKiernan JM, Buttyan R, Bander NH et al (1997) Expression of the tumour-associated gene MN: a potential biomarker for human renal cell carcinoma. Cancer Res 57:2362–2365

    PubMed  CAS  Google Scholar 

  • McMurtrie HL, Cleary HJ, Alvarez BV et al (2004) The bicarbonate transport metabolon. J Enz Inhib Med Chem 19:231–236

    CAS  Google Scholar 

  • Morgan PE, Pastoreková S, Stuart-Tilley AK et al (2007) Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters. Am J Physiol Cell Physiol 293:C738–C748

    PubMed  CAS  Google Scholar 

  • Mori M, Staniunas RJ, Barnard GF et al (1993) The significance of carbonic anhydrase expression in human colorectal cancer. Gastroenterology 105:820–826

    PubMed  CAS  Google Scholar 

  • Morimoto K, Nishimori I, Takeuchi T et al (2005) Overexpression of carbonic anhydrase-related protein XI promotes proliferation and invasion of gastrointestinal stromal tumors. Virchows Arch 447:66–73

    PubMed  CAS  Google Scholar 

  • Müller V, Riethdorf S, Rack B et al (2011) DETECT study group. Prospective evaluation of serum tissue inhibitor of metalloproteinase 1 and carbonic anhydrase IX in correlation to circulating tumor cells in patients with metastatic breast cancer. Breast Cancer Res 13:R71

    PubMed  Google Scholar 

  • Murri-Plesko MT, Hulikova A, Oosterwijk E et al (2011) Antibody inhibiting enzymatic activity of tumour-associated carbonic anhydrase isoform IX. Eur J Pharmacol 657:173–183

    PubMed  CAS  Google Scholar 

  • Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777

    PubMed  CAS  Google Scholar 

  • Niemelä AM, Hynninen P, Mecklin JP et al (2007) Carbonic anhydrase IX is highly expressed in hereditary nonpolyposis colorectal cancer. Cancer Epidemiol Biomarkers Prev 16:1760–1706

    PubMed  Google Scholar 

  • Olive PL, Aquino-Parsons C, MacPhail SH et al (2001) Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical cancer. Cancer Res 61:8924–8929

    PubMed  CAS  Google Scholar 

  • Oosterwijk E, Ruiter DJ, Hoedemaeker PJ et al (1986) Monoclonal antibody G250 recognizes determinant present in renal cell carcinoma and absent from normal kidney. Int J Cancer 38:489–494

    PubMed  CAS  Google Scholar 

  • Opavsky R, Pastorekova S, Zelnik V et al (1996) Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 33:480–487

    PubMed  CAS  Google Scholar 

  • Ord JJ, Streeter EH, Roberts IS et al (2005) Comparison of hypoxia transcriptome in vitro with in vivo gene expression in human bladder cancer. Br J Cancer 93:346–354

    PubMed  CAS  Google Scholar 

  • Orlowski A, De Giusti VC, Morgan PE et al (2012) Binding of carbonic anhydrase IX to extracellular loop 4 of the NBCe1 Na+/HCO3− cotransporter enhances NBCe1-mediated HCO3− influx in the rat heart. Am J Physiol Cell Physiol 303:C69–C80

    PubMed  CAS  Google Scholar 

  • Ozensoy O, Pucetti L, Fasolis G et al (2005) Carbonic anhydrase inhibitors: inhibition of the tumor-associated isoenzymes IX and XII with a library of aromatic and heteroaromatic sulfonamides. Bioorg Med Chem Lett 15:4862–4866

    PubMed  Google Scholar 

  • Pacchiano F, Carta F, McDonald PC et al (2011) Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 54:1896–1902

    PubMed  CAS  Google Scholar 

  • Pan PW, Parkkila AK, Autio S et al (2012) Brain phenotype of carbonic anhydrase IX-deficient mice. Transgenic Res 21:163–176

    PubMed  CAS  Google Scholar 

  • Papi A, Storci G, Guarnieri T et al (2013) Peroxisome proliferator activated receptor-α/hypoxia inducible factor-1α interplay sustains carbonic anhydrase IX and apoliprotein E expression in breast cancer stem cells. PLoS One 8(1):e54968

    PubMed  CAS  Google Scholar 

  • Parent AS, Mungenast AE, Lomniczi A et al (2007) A contactin-receptor-like protein tyrosine phosphatase beta complex mediates adhesive communication between astroglial cells and gonadotrophin-releasing hormone neurones. J Neuroendocrinol 19:847–859

    PubMed  CAS  Google Scholar 

  • Parkkila S, Innocenti A, Kallio H et al (2009) The protein tyrosine kinase inhibitors imatinib and nilotinib strongly inhibit several mammalian alpha-carbonic anhydrase isoforms. Bioorg Med Chem Lett 19:4102–4106

    PubMed  CAS  Google Scholar 

  • Parkkila S, Vullo D, Maresca A et al (2012) Serendipitous fragment-based drug discovery: ketogenic diet metabolites and statins effectively inhibit several carbonic anhydrases. Chem Commun (Camb) 48:3551–3553

    CAS  Google Scholar 

  • Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    PubMed  CAS  Google Scholar 

  • Pastorek J, Pastoreková S, Callebaut I et al (1994) Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 9:2877–2888

    PubMed  CAS  Google Scholar 

  • Pastorekova S, Zavadova Z, Kostal M et al (1992) A novel quasi-viral agent, MaTu, is a two-component system. Virology 187:620–626

    PubMed  CAS  Google Scholar 

  • Pastorekova S, Parkkila S, Parkkila AK et al (1997) Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 112:398–408

    PubMed  CAS  Google Scholar 

  • Pastorekova S, Parkkila S, Pastorek J et al (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enz Inhib Med Chem 19:199–229

    CAS  Google Scholar 

  • Pastorekova S, Vullo D, Casini A et al (2005) Carbonic anhydrase inibitors: synthesis and inhibition of the tumor-associated isozymes IX and XII with polyfluorinated aromatic/heterocyclic sulfonamides. J Enzyme Inhib Med Chem 20:211–7

    PubMed  CAS  Google Scholar 

  • Pastorekova S, Ratcliffe PJ, Pastorek J (2008) Molecular mechanisms of carbonic anhydrase IX-mediated pH regulation under hypoxia. BJU Int 101(Suppl 4):8–15. doi:10.1111/j.1464-410X.2008.07642.x.

    PubMed  CAS  Google Scholar 

  • Peles E, Nativ M, Campbell PL et al (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase β is a functional ligand for the axonal cell recognition molecule contactin. Cell 82:251–260

    PubMed  CAS  Google Scholar 

  • Petrul HM, Schatz CA, Kopitz CC et al (2012) Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol Cancer Ther 11:340–349

    PubMed  CAS  Google Scholar 

  • Potter C, Harris AL (2004) Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle 3:164–167

    PubMed  CAS  Google Scholar 

  • Pucetti L, Fasolis G, Cecchi A et al (2005) Carbonic anhydrase inibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with sulfonamides incorporating thioureido-sulfanilyl scaffolds. Bioorg Med Chem Lett 15:2359–2364

    Google Scholar 

  • Rademakers SE, Lok J, van der Kogel AJ et al (2011, May 12) Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11:167. doi:10.1186/1471–2407-11-167.

    PubMed  Google Scholar 

  • Radvak P, Repic M, Svastova E et al (2013) Suppression of carbonic anhydrase IX leads to aberrant focal adhesion and decreased invasion of tumor cells. Oncol Rep 29:1147–1153

    PubMed  CAS  Google Scholar 

  • Rafajova M, Zatovicova M, Kettmann R et al (2004) Induction by hypoxia combined with low glucose or low bicarbonate and high posttranslational stability upon reoxygenation contribute to carbonic anhydrase IX expression in cancer cells. Int J Oncol 24:995–1004

    PubMed  CAS  Google Scholar 

  • Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76:S11–S22

    PubMed  Google Scholar 

  • Rami M, Winum JY, Innocenti A et al (2008) Carbonic anhydrase inhibitors: copper(II) complexes of polyamino-polycarboxylamido aromatic/heterocyclic sulfonamides are very potent inhibitors of the tumor-associated isoforms IX and XII. Bioorg Med Chem Lett 18:836–841

    PubMed  CAS  Google Scholar 

  • Raval RR, Lau KW, Tran MGB et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686

    PubMed  CAS  Google Scholar 

  • Reichert JM (2011) Antibody-based therapeutics to watch in 2011. MAbs 3:76–99

    PubMed  Google Scholar 

  • Saarnio J, Parkkila S, Parkkila AK et al (1998a) Immunohistochemistry of carbonic anhydrase isozyme IX (MN/CA IX) in human gut reveals polarized expression in the epithelial cells with the highest proliferative capacity. J Histochem Cytochem 46:497–504

    CAS  Google Scholar 

  • Saarnio J, Parkkila S, Parkkila AK et al (1998b) Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am J Pathol 153:279–285

    CAS  Google Scholar 

  • Saczewski F, Sławiński J, Kornicka A et al (2006) Carbonic anhydrase inhibitors. Inhibition of the cytosolic human isozymes I and II, and the transmembrane, tumor-associated isozymes IX and XII with substituted aromatic sulfonamides activatable in hypoxic tumors. Bioorg Med Chem Lett 16:4846–4851

    PubMed  CAS  Google Scholar 

  • Sandlund J, Oosterwijk E, Grankvist K et al (2007) Prognostic impact of carbonic anhydrase IX expression in human renal cell carcinoma. BJU Int 100:556–560

    PubMed  Google Scholar 

  • Sansone P, Storci G, Giovannini C et al (2007a) p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 25:807–815

    CAS  Google Scholar 

  • Sansone P, Storci G, Tavolari S et al (2007b) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117:3988–4002

    CAS  Google Scholar 

  • Schoppmann SF, Jesch B, Friedrich J et al (2012) Phosphorylation of signal transducer and activator of transcription 3 (STAT3) correlates with Her-2 status, carbonic anhydrase 9 expression and prognosis in esophageal cancer. Clin Exp Metastasis 29:615–624

    PubMed  CAS  Google Scholar 

  • Schwab A (2001) Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol Renal Physiol 280:F739–F747

    PubMed  CAS  Google Scholar 

  • Scozzafava A, Mastrolorenzo A, Supuran CT (2004) Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin Ther Patents 14:667–702

    CAS  Google Scholar 

  • Shao Y, Li Y, Zhang J et al (2010) Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX. Nucleic Acids Res 38:2813–2824

    PubMed  CAS  Google Scholar 

  • Shimoda LA, Fallon M, Pisarcik S et al (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 291:L941–L949

    PubMed  CAS  Google Scholar 

  • Shin KH, Diaz-Gonzalez JA, Russell J et al (2007) Detecting changes in tumor hypoxia with carbonic anhydrase IX and pimonidazole. Cancer Biol Ther 6:70–75

    PubMed  CAS  Google Scholar 

  • Shin HJ, Rho SB, Jung DC et al (2011) Carbonic anhydrase IX (CA9) modulates tumor-associated cell migration and invasion. J Cell Sci 124:1077–1087

    PubMed  CAS  Google Scholar 

  • Siebels M, Rohrmann K, Oberneder R et al (2011) A clinical phase I/II trial with the monoclonal antibody cG250 (RENCAREX®) and interferon-alpha-2a in metastatic renal cell carcinoma patients. World J Urol 29:121–126

    PubMed  CAS  Google Scholar 

  • Smaine FZ, Winum JY, Montero JL et al (2007) Carbonic anhydrase inhibitors: selective inhibition of the extracellular, tumor-associated isoforms IX and XII over isozymes I and II with glycosyl-thioureido-sulfonamides. Bioorg Med Chem Lett 17:5096–5100

    PubMed  CAS  Google Scholar 

  • Smyth LG, O’Hurley G, O’Grady A et al (2010) Carbonic anhydrase IX expression in prostate cancer. Prostate Cancer Prostatic Dis 13:178–181

    PubMed  CAS  Google Scholar 

  • Sobhanifar S, Aquino-Parsons C, Stanbridge EJ et al (2005) Reduced expression of hypoxia-inducible factor-1alpha in perinecrotic regions of solid tumors. Cancer Res 65:7259–7266

    PubMed  CAS  Google Scholar 

  • Sørensen BS, Hao J, Overgaard J et al (2005) Influence of oxygen concentration and pH on expression of hypoxia induced genes. Radiother Oncol 76:187–193

    PubMed  Google Scholar 

  • Stillebroer AB, Mulders PF, Boerman OC et al (2010) Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur Urol 58:75–83

    PubMed  CAS  Google Scholar 

  • Stock C, Schwab A (2009) Protons make tumor cells move like clockwork. Pflugers Arch 458:981–992

    PubMed  CAS  Google Scholar 

  • Stock C, Mueller M, Kraehling H et al (2007) pH nanoenvironment at the surface of single melanoma cells. Cell Physiol Biochem 20:679–686

    PubMed  CAS  Google Scholar 

  • Storci G, Sansone P, Trere D et al (2008) The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 214:25–37

    PubMed  CAS  Google Scholar 

  • Stubbs M, McSheehy PMJ, Griffiths JR et al (2000) Causes and consequences of tumor acidity and implications for treatment. Mol Med Today 6:15–19

    PubMed  CAS  Google Scholar 

  • Supuran CT (2007) Carbonic anhydrases as drug targets—an overview. Curr Top Med Chem 7:825–833

    PubMed  CAS  Google Scholar 

  • Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    PubMed  CAS  Google Scholar 

  • Supuran CT, Scozzafava A (2000) Carbonic anhydrase inhibitors: aromatic sulfonamides and disulfonamides act as efficient tumor growth inhibitors. J Enzyme Inhib 15:597–610

    PubMed  CAS  Google Scholar 

  • Supuran CT, Briganti F, Tilli S et al (2001) Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorg Med Chem Let 9:703–714

    CAS  Google Scholar 

  • Svastova E, Pastorekova S (2013) Carbonic anhydrase IX: a hypoxia-controlled “catalyst” of cell migration. Cell Adh Migr 7(2):226–231

    Google Scholar 

  • Svastova E, Zilka N, Zatovicova M et al (2003) Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with β-catenin. Exp Cell Res 290:332–345

    PubMed  CAS  Google Scholar 

  • Svastova E, Hulikova A, Rafajova M et al (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–495

    PubMed  CAS  Google Scholar 

  • Svastova E, Witarski W, Csaderova L et al (2012) Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J Biol Chem 287:3392–3402

    PubMed  CAS  Google Scholar 

  • Swietach P, Patiar S, Supuran CT et al (2009) The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths. J Biol Chem 284:20299–20310

    PubMed  CAS  Google Scholar 

  • Swietach P, Hulikova A, Vaughan-Jones RD et al (2010) New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 29:6509–6521

    PubMed  CAS  Google Scholar 

  • Swietach P, Hulikova A, Patiar S et al (2012) Importance of intracellular pH in determining the uptake and efficacy of the weakly basic chemotherapeutic drug, doxorubicin. PLoS One 7(4):e35949. doi:10.1371/journal.pone.0035949

    PubMed  CAS  Google Scholar 

  • Swinson DE, Jones JL, Cox G et al (2004) Hypoxia-inducible factor-1 alpha in non small cell lung cancer: relation to growth factor, protease and apoptosis pathways. Int J Cancer 111:43–50

    PubMed  CAS  Google Scholar 

  • Tafreshi NK, Bui MM, Bishop K et al (2012) Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes. Clin Cancer Res 18:207–219. doi:10.1158/1078–0432.CCR-11-0238

    PubMed  CAS  Google Scholar 

  • Takacova M, Bartosova M, Skvarkova L et al (2013) Carbonic anhydrase IX is a clinically significant tissue and serum biomarker associated with renal cell carcinoma. Oncol Lett 5:191–197

    PubMed  CAS  Google Scholar 

  • Takahashi K, Stamenkovic I, Cutler M et al (1996) Keratan sulfate modification of CD44 modulates adhesion to hyaluronate. J Biol Chem 271:9490–9496

    PubMed  CAS  Google Scholar 

  • Teicher BA, Liu SD, Liu JT et al (1993) A carbonic anhydrase inhibitor is potential modulator of cancer therapies. Anticancer Res 13:1549–1556

    PubMed  CAS  Google Scholar 

  • Temperini C, Innocenti A, Mastrolorenzo A et al (2007) Carbonic anhydrase inhibitors. Interaction of the antiepileptic drug sulthiame with twelve mammalian isoforms: kinetic and X-ray crystallographic studies. Bioorg Med Chem Lett 17:4866–4872

    PubMed  CAS  Google Scholar 

  • Thews O, Gassner B, Kelleher DK et al (2006) Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 8:143–152

    PubMed  CAS  Google Scholar 

  • Thiry A, Ledecq M, Cecchi A et al (2006) Indanesulfonamides as carbonic anhydrase inhibitors. Toward structure-based design of selective inhibitors of the tumor-associated isozyme CA IX. J Med Chem 49:2743–2749

    PubMed  CAS  Google Scholar 

  • Tomes L, Emberley E, Niu Y et al (2003) Necrosis and hypoxia in invasive breast carcinoma. Breast Cancer Res Treat 81:61–69

    PubMed  Google Scholar 

  • Touisni N, Maresca A, McDonald PC et al (2011) Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 54:8271–8277

    PubMed  CAS  Google Scholar 

  • Türeci O, Sahin U, Vollmar E et al (1998) Human carbonic anhydrase XII: cDNA cloning, expression and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cancers. Proc Natl Acad Sci USA 95:7608–7613

    PubMed  Google Scholar 

  • Turkmen H, Dugrun M, Yilmaztekin S et al (2005) Carbonic anhydrase inibitors: novel sulfanilamide/acetazolamide derivatives obtained by the tail approach and their interaction with the cytosolic isozymes I and II and the tumor-associated isozymes IX. Bioorg Med Chem Lett 17:367–372

    Google Scholar 

  • Turner JR, Odze RD, Crum CP et al (1997) MN antigen expression in normal, preneoplastic and neoplastic esophagus: a clinicopathological study of a new cancer-associated biomarker. Hum Pathol 28:740–744

    PubMed  CAS  Google Scholar 

  • Turner KJ, Crew JP, Wykoff CC et al (2002) The hypoxia-inducible genes VEGF and CA9 are differentially regulated in superficial vs invasive bladder cancer. Br J Cancer 86:1276–1282

    PubMed  CAS  Google Scholar 

  • Uemura H, Nakagawa Y, Yoshida K et al (1999) MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br J Cancer 81:741–746

    PubMed  CAS  Google Scholar 

  • Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281:9030–9037

    PubMed  CAS  Google Scholar 

  • van den Beucken T, Koritzinsky M, Niessen H et al (2009) Hypoxia-induced expression of carbonic anhydrase 9 is dependent on the unfolded protein response. J Biol Chem 284:24204–24212

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed  CAS  Google Scholar 

  • Vaupel P (2010) Metabolic microenvironment of tumor cells: a key factor in malignant progression. Exp Oncol 32:125–127

    PubMed  CAS  Google Scholar 

  • Vermylen P, Roufosse C, Burny A et al (1999) Carbonic anhydrase IX antigen differentiates between preneoplastic and malignant lesions in non-small cell lung carcinomas. Eur Respir J 14:806–811

    PubMed  CAS  Google Scholar 

  • Vleugel MM, Greijer AE, Shvarts A et al (2005) Differential prognostic impact of hypoxia induced and diffuse HIF-1alpha expression in invasive breast cancer. J Clin Pathol 58:172–177

    PubMed  CAS  Google Scholar 

  • Vordermark D, Kaffer A, Riedl S et al (2005) Characterization of carbonic anhydrase IX (CA IX) as an endogenous marker of chronic hypoxia in live human tumor cells. Int J Radiat Oncol Biol Phys 61:1197–1207

    PubMed  CAS  Google Scholar 

  • Vukovic V, Tannock IF (1997) Influence of the pH on cytotoxicity of paclitaxel, mitoxanthrone and topotecan. Br J Cancer 75:1167–1172

    PubMed  CAS  Google Scholar 

  • Vullo D, Franchi M, Gallori E et al (2003) Carbonic anhydrase inhibitors. Inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Let 13:1005–1009

    CAS  Google Scholar 

  • Vullo D, Scozzafava A, Pastorekova S et al (2004) Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with fluorine-containing sulfonamides. The first subnanomolar CA IX inhibitor discovered. Bioorg Med Chem Lett 14:2351–2356

    PubMed  CAS  Google Scholar 

  • Weber A, Casini A, Heine A et al (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47:550–557

    PubMed  CAS  Google Scholar 

  • Wiesener MS, Munchenhagen PM, Berger I et al (2001) Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1α in clear cell renal carcinomas. Cancer Res 61:5215–5222

    PubMed  CAS  Google Scholar 

  • Wingo T, Tu C, Laipis PJ et al (2001) The catalytic properties of human carbonic anhydrase IX. Biochem Biophys Res Commun 288:666–669

    PubMed  CAS  Google Scholar 

  • Winter SC, Buffa FM, Silva P et al (2007) Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 67:3441–3449

    PubMed  CAS  Google Scholar 

  • Winum JY, Vullo D, Casini A et al (2003a) Carbonic anhydrase inhibitors. Inhibition of cytosolic isozymes I and II and transmembrane, tumor-associated isozyme ix with sulfamates including EMATE also acting as steroid sulfatase inhibitors. J Med Chem 46:2197–2204

    CAS  Google Scholar 

  • Winum JY, Vullo D, Casini A, Montero JL, Scozzafava A, Supuran CT (2003b) Carbonic anhydrase inhibitors: inhibition of transmembrane, tumor-associated isozyme IX, and cytosolic isozymes 1 and II with aliphatic sulfamates. J Med Chem 46:5471–5477

    CAS  Google Scholar 

  • Winum JY, Pastorekova S, Jakubickova L et al (2005a) Carbonic anhydrase inibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with bis-sulfamates. Bioorg Med Chem Lett 15:573–578

    Google Scholar 

  • Winum JY, Dogne JM, Casini A et al (2005b) Carbonic anhydrase inibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with sulfonamides incorporating hydrazine moieties. J Med Chem 48:2121–2125

    CAS  Google Scholar 

  • Winum JY, Innocenti A, Nasr J et al (2005c) Carbonic anhydrase inibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with N-hydroxysulfamides—a new zinc-binding function in the design of inhibitors. Bioorg Med Chem Lett 15:2353–2358

    CAS  Google Scholar 

  • Winum JY, Cecchi A, Montero JL et al (2005d) Carbonic anhydrase inhibitors. Synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II and IX with oron-containing sulfonamides, sulfamides and sulfamates: towards agents for boron neutron capture therapy of hypoxic tumors. Bioorg Med Chem Lett 15:3302–3306

    CAS  Google Scholar 

  • Wojtkowiak JW, Verduzco D, Schramm KJ et al (2011) Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 8:2032–2038

    PubMed  CAS  Google Scholar 

  • Wykoff C, Beasley N, Watson P et al (2000) Hypoxia-inducible regulation of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

    PubMed  CAS  Google Scholar 

  • Wykoff CC, Beasley N, Watson PH et al (2001) Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. Am J Pathol 158:1011–1019

    PubMed  CAS  Google Scholar 

  • Xu C, Lo A, Yammanuru A et al (2010) Unique biological properties of catalytic domain directed human anti-CAIX antibodies discovered through phage-display technology. PLoS One 5(3):e9625. doi:10.1371/journal.pone.0009625

    PubMed  Google Scholar 

  • Yoo CW, Nam BH, Kim JY et al (2010) Carbonic anhydrase XII expression is associated with histologic grade of cervical cancer and superior radiotherapy outcome. Radiat Oncol 5:101. doi:10.1186/1748-717X-5-101

    PubMed  Google Scholar 

  • Yoshiura K, Nakaoka T, Nishishita T et al (2005) Carbonic anhydrase II is a tumor vessel endothelium-associated antigen targeted by dendritic cell therapy. Clin Cancer Res 11:8201–8207

    PubMed  CAS  Google Scholar 

  • Zatovicova M, Tarabkova K, Svastova E et al (2003) Monoclonal antibodies generated in carbonic anhydrase IX-deficient mice recognize different domains of tumour-associated hypoxia-induced carbonic anhydrase IX. J Immunol Methods 282:117–134

    CAS  Google Scholar 

  • Zatovicova M, Sedlakova O, Svastova E et al (2005) Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. Br J Cancer 93:1267–1276

    PubMed  CAS  Google Scholar 

  • Zatovicova M, Jelenska L, Hulikova A et al (2010) Carbonic anhydrase IX as an anticancer therapy target: preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Curr Pharm Des 16:3255–3263

    PubMed  CAS  Google Scholar 

  • Zavada J, Zavadova Z, Pastorekova S et al (1993) Expression of MaTu-MN protein in human tumor cultures and in clinical specimens. Int J Cancer 54:268–274

    PubMed  CAS  Google Scholar 

  • Zavada J, Zavadova Z, Pastorek J et al (2000) Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer 82:1808–1813

    PubMed  CAS  Google Scholar 

  • Zavada J, Zavadova Z, Zatovicova M et al (2003) Soluble form of carbonic anhydrase IX (CA IX) in the serum and urine of renal carcinoma patients. Br J Cancer 89:1067–1071

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors’ research is supported by grants from the EU 7th Framework program (Collaborative project METOXIA), from the Research and Development Support Agency (DO7RP-0017-09 and APVV-0658-11), and from the Research & Development Operational Program funded by the ERDF (project ITMS 26240120027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Pastorekova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pastorekova, S., Supuran, C. (2014). Carbonic Anhydrase IX: From Biology to Therapy. In: Melillo, G. (eds) Hypoxia and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9167-5_6

Download citation

Publish with us

Policies and ethics