Maher, C. A., Kumar-Sinha, C., Cao, X., Kalyana-Sundaram, S., Han, B., Jing, X., et al. (2009). Transcriptome sequencing to detect gene fusions in cancer. Nature, 458(7234), 97–101. doi:10.1038/nature07638.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770. doi:10.1038/ng1590.
CAS
PubMed
Article
Google Scholar
Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9136–9141. doi:10.1073/pnas.0508889103.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., et al. (2009). Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461(7261), 272–276. doi:10.1038/nature08250.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274. doi:10.1126/science.1133427.
PubMed
Article
CAS
Google Scholar
Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496–512.
CAS
PubMed
Article
Google Scholar
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. doi:10.1038/35057062.
CAS
PubMed
Article
Google Scholar
Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456(7218), 66–72. doi:10.1038/nature07485.
CAS
PubMed
PubMed Central
Article
Google Scholar
Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4), 823–837. doi:10.1016/j.cell.2007.05.009.
CAS
PubMed
Article
Google Scholar
Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., et al. (1996). Accessing genetic information with high-density DNA arrays. Science, 274(5287), 610–614.
CAS
PubMed
Article
Google Scholar
Wang, D. G., Fan, J. B., Siao, C. J., Berno, A., Young, P., Sapolsky, R., et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 280(5366), 1077–1082.
CAS
PubMed
Article
Google Scholar
Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450(7171), 893–898. doi:10.1038/nature06358.
CAS
PubMed
PubMed Central
Article
Google Scholar
Guan, J., Gupta, R., & Filipp, F. V. (2015). Cancer systems biology of TCGA SKCM: efficient detection of genomic drivers in melanoma. Scientific Reports, 5, 7857. doi:10.1038/srep07857.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., et al. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495–501. doi:10.1038/nature12912.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. doi:10.1038/nature08658.
CAS
PubMed
Article
Google Scholar
T. C. G. A. Research Network (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337. doi:10.1038/nature11252.
T. C. G. A. Research Network. (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489(7417), 519–525. doi:10.1038/nature11404.
T. C. G. A. Research Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70. doi:10.1038/nature11412.
Nikolaev, S. I., Rimoldi, D., Iseli, C., Valsesia, A., Robyr, D., Gehrig, C., et al. (2011). Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics, 44(2), 133–139. doi:10.1038/ng.1026.
PubMed
Article
CAS
Google Scholar
Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J. P., et al. (2012). A landscape of driver mutations in melanoma. Cell, 150(2), 251–263. doi:10.1016/j.cell.2012.06.024.
CAS
PubMed
PubMed Central
Article
Google Scholar
Krauthammer, M., Kong, Y., Ha, B. H., Evans, P., Bacchiocchi, A., McCusker, J. P., et al. (2012). Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 44(9), 1006–1014. doi:10.1038/ng.2359.
CAS
PubMed
PubMed Central
Article
Google Scholar
Berger, M. F., Hodis, E., Heffernan, T. P., Deribe, Y. L., Lawrence, M. S., Protopopov, A., et al. (2012). Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 485(7399), 502–506. doi:10.1038/nature11071.
CAS
PubMed
PubMed Central
Google Scholar
T. C. G. A. Research Network (2015). Genomic classification of cutaneous melanoma. Cell, 161(7), 1681–1696. doi:10.1016/j.cell.2015.05.044.
Ramos, A. H., Lichtenstein, L., Gupta, M., Lawrence, M. S., Pugh, T. J., Saksena, G., et al. (2015). Oncotator: cancer variant annotation tool. Human Mutation, 36(4), E2423–E2429. doi:10.1002/humu.22771.
PubMed
Article
Google Scholar
Arafeh, R., Qutob, N., Emmanuel, R., Keren-Paz, A., Madore, J., Elkahloun, A., et al. (2015). Recurrent inactivating RASA2 mutations in melanoma. Nature Genetics, 47(12), 1408–1410. doi:10.1038/ng.3427.
CAS
PubMed
PubMed Central
Article
Google Scholar
Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., et al. (2010). The landscape of somatic copy-number alteration across human cancers. Nature, 463(7283), 899–905. doi:10.1038/nature08822.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lawrence, M. S., Stojanov, P., Polak, P., Kryukov, G. V., Cibulskis, K., Sivachenko, A., et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 499(7457), 214–218. doi:10.1038/nature12213.
CAS
PubMed
PubMed Central
Article
Google Scholar
Knoppers, B. M. (2010). Consent to ‘personal’ genomics and privacy. Direct-to-consumer genetic tests and population genome research challenge traditional notions of privacy and consent. EMBO Reports, 11(6), 416–419. doi:10.1038/embor.2010.69.
CAS
PubMed
PubMed Central
Article
Google Scholar
Reardon, S. (2015). Giant study poses DNA data-sharing dilemma. Nature, 525(7567), 16–17. doi:10.1038/525016a.
CAS
PubMed
Article
Google Scholar
Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073. doi:10.1038/nature09534.
PubMed
Article
CAS
Google Scholar
Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., et al. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74. doi:10.1038/nature15393.
PubMed
Article
CAS
Google Scholar
Natarajan, P., Gold, N. B., Bick, A. G., McLaughlin, H., Kraft, P., Rehm, H. L., et al. (2016). Aggregate penetrance of genomic variants for actionable disorders in European and African Americans. Science Translational Medicine, 8(364), 364ra151. doi:10.1126/scitranslmed.aag2367.
PubMed
Article
Google Scholar
Aronson, S. J., & Rehm, H. L. (2015). Building the foundation for genomics in precision medicine. Nature, 526(7573), 336–342. doi:10.1038/nature15816.
CAS
PubMed
Article
Google Scholar
Obama, B. (2016). United States health care reform: progress to date and next steps. JAMA, 316(5), 525–532. doi:10.1001/jama.2016.9797.
PubMed
PubMed Central
Article
Google Scholar
Juengst, E., McGowan, M. L., Fishman, J. R., & Settersten Jr., R. A. (2016). From “personalized” to “precision” medicine: the ethical and social implications of rhetorical reform in genomic medicine. The Hastings Center Report, 46(5), 21–33. doi:10.1002/hast.614.
PubMed
PubMed Central
Article
Google Scholar
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954. doi:10.1038/nature00766.
CAS
PubMed
Article
Google Scholar
Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi:10.1038/ng1054.
CAS
PubMed
Article
Google Scholar
Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507–2516. doi:10.1056/NEJMoa1103782.
CAS
PubMed
PubMed Central
Article
Google Scholar
Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367(2), 107–114. doi:10.1056/NEJMoa1203421.
CAS
PubMed
Article
Google Scholar
Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine, 367(18), 1694–1703. doi:10.1056/NEJMoa1210093.
CAS
PubMed
PubMed Central
Article
Google Scholar
Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.1056/NEJMoa1406037.
PubMed
Article
CAS
Google Scholar
Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372(1), 30–39. doi:10.1056/NEJMoa1412690.
PubMed
Article
CAS
Google Scholar
Cheng, Y., Zhang, G., & Li, G. (2013). Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Reviews, 32(3–4), 567–584. doi:10.1007/s10555-013-9433-9.
CAS
PubMed
Article
Google Scholar
Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England Journal of Medicine, 369(2), 122–133. doi:10.1056/NEJMoa1302369.
CAS
PubMed
Article
Google Scholar
Postow, M. A., Chesney, J., Pavlick, A. C., Robert, C., Grossmann, K., McDermott, D., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. The New England Journal of Medicine, 372(21), 2006–2017. doi:10.1056/NEJMoa1414428.
PubMed
Article
Google Scholar
Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23–34. doi:10.1056/NEJMoa1504030.
PubMed
Article
CAS
Google Scholar
Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., et al. (2016). Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 165(1), 35–44. doi:10.1016/j.cell.2016.02.065.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rotte, A., Bhandaru, M., Zhou, Y., & McElwee, K. J. (2015). Immunotherapy of melanoma: present options and future promises. Cancer Metastasis Reviews, 34(1), 115–128. doi:10.1007/s10555-014-9542-0.
CAS
PubMed
Article
Google Scholar
Bollag, G., Hirth, P., Tsai, J., Zhang, J., Ibrahim, P. N., Cho, H., et al. (2010). Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 467(7315), 596–599. doi:10.1038/nature09454.
CAS
PubMed
PubMed Central
Article
Google Scholar
Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., et al. (2010). Inhibition of mutated, activated BRAF in metastatic melanoma. The New England Journal of Medicine, 363(9), 809–819. doi:10.1056/NEJMoa1002011.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.1016/S0140-6736(12)60868-X.
CAS
PubMed
Article
Google Scholar
Krepler, C., Xiao, M., Sproesser, K., Brafford, P. A., Shannan, B., Beqiri, M., et al. (2016). Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies. Clinical Cancer Research, 22(7), 1592–1602. doi:10.1158/1078-0432.CCR-15-1762.
CAS
PubMed
Article
Google Scholar
Wagle, N., Van Allen, E. M., Treacy, D. J., Frederick, D. T., Cooper, Z. A., Taylor-Weiner, A., et al. (2014). MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discovery, 4(1), 61–68. doi:10.1158/2159-8290.CD-13-0631.
CAS
PubMed
Article
Google Scholar
Larkin, J., Ascierto, P. A., Dreno, B., Atkinson, V., Liszkay, G., Maio, M., et al. (2014). Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. The New England Journal of Medicine, 371(20), 1867–1876. doi:10.1056/NEJMoa1408868.
PubMed
Article
CAS
Google Scholar
Phan, G. Q., Yang, J. C., Sherry, R. M., Hwu, P., Topalian, S. L., Schwartzentruber, D. J., et al. (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8372–8377. doi:10.1073/pnas.1533209100.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yuan, J., Gnjatic, S., Li, H., Powel, S., Gallardo, H. F., Ritter, E., et al. (2008). CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20410–20415. doi:10.1073/pnas.0810114105.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723. doi:10.1056/NEJMoa1003466.
CAS
PubMed
PubMed Central
Article
Google Scholar
Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517–2526. doi:10.1056/NEJMoa1104621.
CAS
PubMed
Article
Google Scholar
Eggermont, A. M., Chiarion-Sileni, V., Grob, J. J., Dummer, R., Wolchok, J. D., Schmidt, H., et al. (2016). Prolonged survival in stage III melanoma with Ipilimumab adjuvant therapy. The New England Journal of Medicine, 375(19), 1845–1855. doi:10.1056/NEJMoa1611299.
CAS
PubMed
Article
Google Scholar
Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372(4), 320–330. doi:10.1056/NEJMoa1412082.
CAS
PubMed
Article
Google Scholar
Robert, C., Schachter, J., Long, G. V., Arance, A., Grob, J. J., Mortier, L., et al. (2015). Pembrolizumab versus ipilimumab in advanced melanoma. The New England Journal of Medicine, 372(26), 2521–2532. doi:10.1056/NEJMoa1503093.
CAS
PubMed
Article
Google Scholar
Ribas, A., Puzanov, I., Dummer, R., Schadendorf, D., Hamid, O., Robert, C., et al. (2015). Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. The Lancet Oncology, 16(8), 908–918. doi:10.1016/S1470-2045(15)00083-2.
CAS
PubMed
Article
Google Scholar
Chen, G., McQuade, J. L., Panka, D. J., Hudgens, C. W., Amin-Mansour, A., Mu, X. J., et al. (2016). Clinical, molecular, and immune analysis of dabrafenib-trametinib combination treatment for BRAF inhibitor-refractory metastatic melanoma: a phase 2 clinical trial. JAMA Oncology, 2(8), 1056–1064. doi:10.1001/jamaoncol.2016.0509.
PubMed
PubMed Central
Article
Google Scholar
van Rooij, N., van Buuren, M. M., Philips, D., Velds, A., Toebes, M., Heemskerk, B., et al. (2013). Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. Journal of Clinical Oncology, 31(32), e439–e442. doi:10.1200/JCO.2012.47.7521.
PubMed
Article
Google Scholar
Overwijk, W. W., Wang, E., Marincola, F. M., Rammensee, H. G., & Restifo, N. P. (2013). Mining the mutanome: developing highly personalized immunotherapies based on mutational analysis of tumors. J Immunother Cancer, 1, 11. doi:10.1186/2051-1426-1-11.
PubMed
PubMed Central
Article
Google Scholar
Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M., Desrichard, A., et al. (2014). Genetic basis for clinical response to CTLA-4 blockade in melanoma. The New England Journal of Medicine, 371(23), 2189–2199. doi:10.1056/NEJMoa1406498.
PubMed
PubMed Central
Article
CAS
Google Scholar
Wong, S. Q., Behren, A., Mar, V. J., Woods, K., Li, J., Martin, C., et al. (2015). Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma. Oncotarget, 6(2), 1115–1127. doi:10.18632/oncotarget.2747.
PubMed
Article
Google Scholar
Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124–128. doi:10.1126/science.aaa1348.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pritchard, A. L., Burel, J. G., Neller, M. A., Hayward, N. K., Lopez, J. A., Fatho, M., et al. (2015). Exome sequencing to predict neoantigens in melanoma. Cancer Immunology Research, 3(9), 992–998. doi:10.1158/2326-6066.CIR-15-0088.
CAS
PubMed
Article
Google Scholar
Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., et al. (2015). Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 350(6257), 207–211. doi:10.1126/science.aad0095.
CAS
PubMed
PubMed Central
Article
Google Scholar
McGranahan, N., Furness, A. J., Rosenthal, R., Ramskov, S., Lyngaa, R., Saini, S. K., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351(6280), 1463–1469. doi:10.1126/science.aaf1490.
CAS
PubMed
PubMed Central
Article
Google Scholar
Verdegaal, E. M., de Miranda, N. F., Visser, M., Harryvan, T., van Buuren, M. M., Andersen, R. S., et al. (2016). Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature, 536(7614), 91–95. doi:10.1038/nature18945.
CAS
PubMed
Article
Google Scholar
Khagi, Y., Kurzrock, R., & Patel, S. P. (2016). Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Reviews. doi:10.1007/s10555-016-9652-y.
PubMed
Google Scholar
Robbins, P. F., Lu, Y. C., El-Gamil, M., Li, Y. F., Gross, C., Gartner, J., et al. (2013). Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 19(6), 747–752. doi:10.1038/nm.3161.
CAS
PubMed
PubMed Central
Article
Google Scholar
Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., et al. (2015). Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 348(6236), 803–808. doi:10.1126/science.aaa3828.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69–74. doi:10.1126/science.aaa4971.
CAS
PubMed
Article
Google Scholar
Gros, A., Parkhurst, M. R., Tran, E., Pasetto, A., Robbins, P. F., Ilyas, S., et al. (2016). Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nature Medicine, 22(4), 433–438. doi:10.1038/nm.4051.
CAS
PubMed
Article
Google Scholar
Stronen, E., Toebes, M., Kelderman, S., van Buuren, M. M., Yang, W., van Rooij, N., et al. (2016). Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 352(6291), 1337–1341. doi:10.1126/science.aaf2288.
CAS
PubMed
Article
Google Scholar
Ledford, H. (2016). Researchers push for personalized tumour vaccines. Nature, 532(7600), 425. doi:10.1038/nature.2016.19801.
PubMed
Article
Google Scholar
Gupta, S. K., Jaitly, T., Schmitz, U., Schuler, G., Wolkenhauer, O., & Vera, J. (2016). Personalized cancer immunotherapy using systems medicine approaches. Briefings in Bioinformatics, 17(3), 453–467. doi:10.1093/bib/bbv046.
PubMed
Article
Google Scholar
Santos, G., Nikolov, S., Lai, X., Eberhardt, M., Dreyer, F. S., Paul, S., et al. (2016). Model-based genotype-phenotype mapping used to investigate gene signatures of immune sensitivity and resistance in melanoma micrometastasis. Scientific Reports, 6, 24967. doi:10.1038/srep24967.
CAS
PubMed
PubMed Central
Article
Google Scholar
Fan, H. C., Gu, W., Wang, J., Blumenfeld, Y. J., El-Sayed, Y. Y., & Quake, S. R. (2012). Non-invasive prenatal measurement of the fetal genome. Nature, 487(7407), 320–324. doi:10.1038/nature11251.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang, Y., Muzny, D. M., Reid, J. G., Bainbridge, M. N., Willis, A., Ward, P. A., et al. (2013). Clinical whole-exome sequencing for the diagnosis of mendelian disorders. The New England Journal of Medicine, 369(16), 1502–1511. doi:10.1056/NEJMoa1306555.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sboner, A., Mu, X. J., Greenbaum, D., Auerbach, R. K., & Gerstein, M. B. (2011). The real cost of sequencing: higher than you think! Genome Biology, 12(8), 125. doi:10.1186/gb-2011-12-8-125.
PubMed
PubMed Central
Article
Google Scholar
Tiffen, J., Wilson, S., Gallagher, S. J., Hersey, P., & Filipp, F. V. (2016). Somatic copy number amplification and Hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma. Neoplasia, 18(2), 121–132. doi:10.1016/j.neo.2016.01.003.
CAS
PubMed
PubMed Central
Article
Google Scholar
Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., et al. (2013). TCIA: an information resource to enable open science. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 1282–1285. doi:10.1109/EMBC.2013.6609742.
Google Scholar
Gutman, D. A., Cobb, J., Somanna, D., Park, Y., Wang, F., Kurc, T., et al. (2013). Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. Journal of the American Medical Informatics Association, 20(6), 1091–1098. doi:10.1136/amiajnl-2012-001469.
PubMed
PubMed Central
Article
Google Scholar
Knijnenburg, T. A., Ramsey, S. A., Berman, B. P., Kennedy, K. A., Smit, A. F., Wessels, L. F., et al. (2014). Multiscale representation of genomic signals. Nature Methods, 11(6), 689–694. doi:10.1038/nmeth.2924.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kamburov, A., Lawrence, M. S., Polak, P., Leshchiner, I., Lage, K., Golub, T. R., et al. (2015). Comprehensive assessment of cancer missense mutation clustering in protein structures. Proceedings of the National Academy of Sciences of the United States of America, 112(40), E5486–E5495. doi:10.1073/pnas.1516373112.
CAS
PubMed
PubMed Central
Article
Google Scholar
Porta-Pardo, E., Garcia-Alonso, L., Hrabe, T., Dopazo, J., & Godzik, A. (2015). A pan-cancer catalogue of cancer driver protein interaction interfaces. PLoS Computational Biology, 11(10), e1004518. doi:10.1371/journal.pcbi.1004518.
PubMed
PubMed Central
Article
CAS
Google Scholar
Engin, H. B., Kreisberg, J. F., & Carter, H. (2016). Structure-based analysis reveals cancer missense mutations target protein interaction interfaces. PloS One, 11(4), e0152929. doi:10.1371/journal.pone.0152929.
PubMed
PubMed Central
Article
CAS
Google Scholar
Tokheim, C., Bhattacharya, R., Niknafs, N., Gygax, D. M., Kim, R., Ryan, M., et al. (2016). Exome-scale discovery of hotspot mutation regions in human cancer using 3D protein structure. Cancer Research, 76(13), 3719–3731. doi:10.1158/0008-5472.CAN-15-3190.
CAS
PubMed
Article
Google Scholar
Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., et al. (2006). The polycomb group protein EZH2 directly controls DNA methylation. Nature, 439(7078), 871–874. doi:10.1038/nature04431.
CAS
PubMed
Article
Google Scholar
Laurent, B. C., Treitel, M. A., & Carlson, M. (1991). Functional interdependence of the yeast SNF2, SNF5, and SNF6 proteins in transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 88(7), 2687–2691.
CAS
PubMed
PubMed Central
Article
Google Scholar
Peterson, C. L., & Herskowitz, I. (1992). Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell, 68(3), 573–583.
CAS
PubMed
Article
Google Scholar
Hamosh, A., Scott, A. F., Amberger, J., Valle, D., & McKusick, V. A. (2000). Online Mendelian Inheritance in Man (OMIM). Human Mutation, 15(1), 57–61. doi:10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G.
CAS
PubMed
Article
Google Scholar
Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer, 91(2), 355–358. doi:10.1038/sj.bjc.6601894.
CAS
PubMed
PubMed Central
Google Scholar
Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., et al. (2015). COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43(Database issue), D805–D811. doi:10.1093/nar/gku1075.
PubMed
Article
Google Scholar
Filipp, F. V. (2013). Cancer metabolism meets systems biology: pyruvate kinase isoform PKM2 is a metabolic master regulator. J Carcinog, 12, 14. doi:10.4103/1477-3163.115423.
PubMed
PubMed Central
Article
CAS
Google Scholar
Scott, D. A., Richardson, A. D., Filipp, F. V., Knutzen, C. A., Chiang, G. G., Ronai, Z. A., et al. (2011). Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. The Journal of Biological Chemistry, 286(49), 42626–42634. doi:10.1074/jbc.M111.282046.
CAS
PubMed
PubMed Central
Article
Google Scholar
Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L., & Smith, J. W. (2012). Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell & Melanoma Research, 25(3), 375–383. doi:10.1111/j.1755-148X.2012.00989.x.
CAS
Article
Google Scholar
Filipp, F. V., Ratnikov, B., De Ingeniis, J., Smith, J. W., Osterman, A. L., & Scott, D. A. (2012). Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell & Melanoma Research, 25(6), 732–739. doi:10.1111/pcmr.12000.
CAS
Article
Google Scholar
Wilson, S., Qi, J., & Filipp, F. V. (2016). Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Scientific Reports, 6, 32611. doi:10.1038/srep32611.
Wilson, S., Fan, L., Sahgal, N., Qi, J., & Filipp, F. V. (2017). The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget, 8. doi:10.18632/oncotarget.15681.
Struys, E. A., Salomons, G. S., Achouri, Y., Van Schaftingen, E., Grosso, S., Craigen, W. J., et al. (2005). Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. American Journal of Human Genetics, 76(2), 358–360. doi:10.1086/427890.
CAS
PubMed
Article
Google Scholar
Dang, L., White, D. W., Gross, S., Bennett, B. D., Bittinger, M. A., Driggers, E. M., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 462(7274), 739–744. doi:10.1038/nature08617.
CAS
PubMed
PubMed Central
Article
Google Scholar
Turcan, S., Rohle, D., Goenka, A., Walsh, L. A., Fang, F., Yilmaz, E., et al. (2012). IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 483(7390), 479–483. doi:10.1038/nature10866.
CAS
PubMed
PubMed Central
Article
Google Scholar
Filipp, F. V. (2017). Crosstalk between epigenetics and metabolism—Yin and Yang of histone demethylases and methyl-transferases in cancer. Briefings in Functional Genomics, 16. doi:10.1093/bfgp/elx001.
Tiffen, J. C., Gunatilake, D., Gallagher, S. J., Gowrishankar, K., Heinemann, A., Cullinane, C., et al. (2015). Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 6(29), 27023–27036. doi:10.18632/oncotarget.4809.
PubMed
PubMed Central
Article
Google Scholar
Mao, P., Smerdon, M. J., Roberts, S. A., & Wyrick, J. J. (2016). Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 9057–9062. doi:10.1073/pnas.1606667113.
CAS
PubMed
PubMed Central
Article
Google Scholar
Feinberg, A. P. (2010). Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nature Biotechnology, 28(10), 1049–1052. doi:10.1038/nbt1010-1049.
CAS
PubMed
PubMed Central
Article
Google Scholar
McCabe, M. T., Ott, H. M., Ganji, G., Korenchuk, S., Thompson, C., Van Aller, G. S., et al. (2012). EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 492(7427), 108–112. doi:10.1038/nature11606.
CAS
PubMed
Article
Google Scholar
Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., et al. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577), 249–253. doi:10.1038/nature15520.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tiffen, J. C., Gallagher, S. J., Tseng, H. Y., Filipp, F. V., Fazekas de St. Groth, B., & Hersey, P. (2016). EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell & Melanoma Research, 29(5), 500–507. doi:10.1111/pcmr.12481.
CAS
Article
Google Scholar
Kelderman, S., Heemskerk, B., van Tinteren, H., van den Brom, R. R., Hospers, G. A., van den Eertwegh, A. J., et al. (2014). Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunology, Immunotherapy, 63(5), 449–458. doi:10.1007/s00262-014-1528-9.
CAS
PubMed
Google Scholar
Weide, B., Martens, A., Hassel, J. C., Berking, C., Postow, M. A., Bisschop, K., et al. (2016). Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-16-0127.
Google Scholar
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. doi:10.1158/2159-8290.CD-12-0095.
PubMed
Article
Google Scholar
Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. doi:10.1126/scisignal.2004088.
PubMed
PubMed Central
Article
CAS
Google Scholar
Curtin, J. A., Busam, K., Pinkel, D., & Bastian, B. C. (2006). Somatic activation of KIT in distinct subtypes of melanoma. Journal of Clinical Oncology, 24(26), 4340–4346. doi:10.1200/JCO.2006.06.2984.
CAS
PubMed
Article
Google Scholar
Shain, A. H., & Bastian, B. C. (2016). From melanocytes to melanomas. Nature Reviews. Cancer, 16(6), 345–358. doi:10.1038/nrc.2016.37.
CAS
PubMed
Article
Google Scholar
Curtin, J. A., Fridlyand, J., Kageshita, T., Patel, H. N., Busam, K. J., Kutzner, H., et al. (2005). Distinct sets of genetic alterations in melanoma. The New England Journal of Medicine, 353(20), 2135–2147. doi:10.1056/NEJMoa050092.
CAS
PubMed
Article
Google Scholar
Hackett, P. B., & Sauerbier, W. (1974). Radiological mapping of the ribosomal RNA transcription unit in E. coli. Nature, 251(5476), 639–641.
CAS
PubMed
Article
Google Scholar
Premi, S., Wallisch, S., Mano, C. M., Weiner, A. B., Bacchiocchi, A., Wakamatsu, K., et al. (2015). Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science, 347(6224), 842–847. doi:10.1126/science.1256022.
CAS
PubMed
PubMed Central
Article
Google Scholar
Abdel-Malek, Z. A., Swope, V. B., Starner, R. J., Koikov, L., Cassidy, P., & Leachman, S. (2014). Melanocortins and the melanocortin 1 receptor, moving translationally towards melanoma prevention. Archives of Biochemistry and Biophysics, 563, 4–12. doi:10.1016/j.abb.2014.07.002.
CAS
PubMed
Article
Google Scholar
Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature, 464(7287), 431–435. doi:10.1038/nature08833.
CAS
PubMed
Article
Google Scholar
Zhang, C., Spevak, W., Zhang, Y., Burton, E. A., Ma, Y., Habets, G., et al. (2015). RAF inhibitors that evade paradoxical MAPK pathway activation. Nature, 526(7574), 583–586. doi:10.1038/nature14982.
CAS
PubMed
Article
Google Scholar
Hugo, W., Shi, H., Sun, L., Piva, M., Song, C., Kong, X., et al. (2015). Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell, 162(6), 1271–1285. doi:10.1016/j.cell.2015.07.061.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., et al. (2010). Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature, 468(7326), 973–977. doi:10.1038/nature09626.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cruz 3rd, F., Rubin, B. P., Wilson, D., Town, A., Schroeder, A., Haley, A., et al. (2003). Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Research, 63(18), 5761–5766.
CAS
PubMed
Google Scholar
Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O’Brien, J. M., et al. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 457(7229), 599–602. doi:10.1038/nature07586.
CAS
PubMed
Article
Google Scholar
Van Raamsdonk, C. D., Griewank, K. G., Crosby, M. B., Garrido, M. C., Vemula, S., Wiesner, T., et al. (2010). Mutations in GNA11 in uveal melanoma. The New England Journal of Medicine, 363(23), 2191–2199. doi:10.1056/NEJMoa1000584.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mitsiades, N., Chew, S. A., He, B., Riechardt, A. I., Karadedou, T., Kotoula, V., et al. (2011). Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Investigative Ophthalmology & Visual Science, 52(10), 7248–7255. doi:10.1167/iovs.11-7398.
CAS
Article
Google Scholar
Boiko, A. D., Razorenova, O. V., van de Rijn, M., Swetter, S. M., Johnson, D. L., Ly, D. P., et al. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature, 466(7302), 133–137. doi:10.1038/nature09161.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mobley, A. K., Braeuer, R. R., Kamiya, T., Shoshan, E., & Bar-Eli, M. (2012). Driving transcriptional regulators in melanoma metastasis. Cancer Metastasis Reviews, 31(3–4), 621–632. doi:10.1007/s10555-012-9358-8.
CAS
PubMed
Article
Google Scholar
Timar, J., Vizkeleti, L., Doma, V., Barbai, T., & Raso, E. (2016). Genetic progression of malignant melanoma. Cancer Metastasis Reviews, 35(1), 93–107. doi:10.1007/s10555-016-9613-5.
CAS
PubMed
Article
Google Scholar
Landi, M. T., Bauer, J., Pfeiffer, R. M., Elder, D. E., Hulley, B., Minghetti, P., et al. (2006). MC1R germline variants confer risk for BRAF-mutant melanoma. Science, 313(5786), 521–522. doi:10.1126/science.1127515.
CAS
PubMed
Article
Google Scholar
Praetorius, C., Grill, C., Stacey, S. N., Metcalf, A. M., Gorkin, D. U., Robinson, K. C., et al. (2013). A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. Cell, 155(5), 1022–1033. doi:10.1016/j.cell.2013.10.022.
CAS
PubMed
Article
Google Scholar
Malladi, S., Macalinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., et al. (2016). Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell, 165(1), 45–60. doi:10.1016/j.cell.2016.02.025.
CAS
PubMed
PubMed Central
Article
Google Scholar
Halaban, R. (2005). Rb/E2F: a two-edged sword in the melanocytic system. Cancer Metastasis Reviews, 24(2), 339–356. doi:10.1007/s10555-005-1582-z.
CAS
PubMed
Article
Google Scholar
Danilov, A. V., Danilova, O. V., & Huber, B. T. (2008). Cell cycle control and adhesion signaling pathways in the development of metastatic melanoma. Cancer Metastasis Reviews, 27(4), 707–714. doi:10.1007/s10555-008-9159-2.
CAS
PubMed
Article
Google Scholar
Bracken, A. P., Pasini, D., Capra, M., Prosperini, E., Colli, E., & Helin, K. (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. The EMBO Journal, 22(20), 5323–5335. doi:10.1093/emboj/cdg542.
CAS
PubMed
PubMed Central
Article
Google Scholar