Skip to main content

Advertisement

Log in

Cell cycle control and adhesion signaling pathways in the development of metastatic melanoma

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastatic melanoma is a fatal malignancy which is remarkably resistant to treatment. It is not entirely clear what determines transition from primary local to metastatic melanoma. Recent gene profiling studies shed light onto the complexity of pathogenesis of melanoma progression. An interaction between cell cycle signaling, adhesion pathways and epithelial–mesenchimal transition program appears to be critical in the development of metastatic disease. An isolated deregulation of either of those pathways may not be sufficient to initiate tumor evolution towards an aggressive phenotype. Here we review how they act in concert to make such a transition possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Clark, W. H. (1991). Tumour progression and the nature of cancer. British Journal of Cancer, 64, 631–644.

    PubMed  CAS  Google Scholar 

  2. Clark Jr., W. H., Elder, D. E., Guerry, D., Epstein, M. N., Greene, M. H., & Van Horn, M. (1984). A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Human Pathology, 15, 1147–1165.

    Article  PubMed  Google Scholar 

  3. Breslow, A. (1970). Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Annals of Surgery, 172, 902–908.

    Article  PubMed  CAS  Google Scholar 

  4. Kuehnl-Petzoldt, C., & Fischer, S. (1987). Tumor thickness is not a prognostic factor in thin melanoma. Archives of Dermatological Research, 279, 487–488.

    Article  PubMed  CAS  Google Scholar 

  5. Haluska, F. G., & Ibrahim, N. (2006). Therapeutic targets in melanoma: map kinase pathway. Current Oncology Reports, 8, 400–405.

    Article  PubMed  CAS  Google Scholar 

  6. Kalinsky, K., & Haluska, F. G. (2007). Novel inhibitors in the treatment of metastatic melanoma. Expert Review of Anticancer Therapy, 7, 715–724.

    Article  PubMed  CAS  Google Scholar 

  7. Monzon, J., Liu, L., Brill, H., Goldstein, A. M., Tucker, M. A., From, L., et al. (1998). CDKN2A mutations in multiple primary melanomas. New England Journal of Medicine, 338, 879–887.

    Article  PubMed  CAS  Google Scholar 

  8. Dissanayake, S. K., Wade, M. S., Johnson, C. E., O’Connell, M. P., Leotlela, P. D., French, A. D., et al. (2007). The WNT5A/PKC pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors, and initiation of an epithelial to mesenchymal transition. Journal of Biological Chemistry, 282(23), 17259–17271.

    Article  PubMed  CAS  Google Scholar 

  9. Weeraratna, A. T., Jiang, Y., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., et al. (2002). Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1, 279–288.

    Article  PubMed  CAS  Google Scholar 

  10. Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532–535.

    Article  PubMed  CAS  Google Scholar 

  11. Carr, K. M., Bittner, M., & Trent, J. M. (2003). Gene-expression profiling in human cutaneous melanoma. Oncogene, 22, 3076–3080.

    Article  PubMed  CAS  Google Scholar 

  12. Cha, H. J., Jeong, M. J., & Kleinman, H. K. (2003). Role of thymosin beta4 in tumor metastasis and angiogenesis. Journal of the National Cancer Institute, 95, 1674–1680.

    PubMed  CAS  Google Scholar 

  13. Ballweber, E., Hannappel, E., Huff, T., Stephan, H., Haener, M., Taschner, N., et al. (2002). Polymerisation of chemically cross-linked actin:thymosin beta(4) complex to filamentous actin: alteration in helical parameters and visualisation of thymosin beta(4) binding on F-actin. Journal of Molecular Biology, 315, 613–625.

    Article  PubMed  CAS  Google Scholar 

  14. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536–540.

    Article  PubMed  CAS  Google Scholar 

  15. Jaeger, J., Koczan, D., Thiesen, H. J., Ibrahim, S. M., Gross, G., Spang, R., et al. (2007). Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clinical Cancer Research, 13, 806–815.

    Article  PubMed  CAS  Google Scholar 

  16. Winnepenninckx, V., Lazar, V., Michiels, S., Dessen, P., Stas, M., Alonso, S. R., et al. (2006). Gene expression profiling of primary cutaneous melanoma and clinical outcome. Journal of the National Cancer Institute, 98, 472–482.

    PubMed  CAS  Google Scholar 

  17. Haqq, C., Nosrati, M., Sudilovsky, D., Crothers, J., Khodabakhsh, D., Pulliam, B. L., et al. (2005). The gene expression signatures of melanoma progression. Proceedings of the National Academy of Sciences of the United States of America, 102, 6092–6097.

    Article  PubMed  CAS  Google Scholar 

  18. Ryu, B., Kim, D. S., Deluca, A. M., & Alani, R. M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE, 2, e594.

    Article  PubMed  CAS  Google Scholar 

  19. Alonso, S. R., Tracey, L., Ortiz, P., Perez-Gomez, B., Palacios, J., Pollan, M., et al. (2007). A high-throughput study in melanoma identifies epithelial–mesenchymal transition as a major determinant of metastasis. Cancer Research, 67, 3450–3460.

    Article  PubMed  CAS  Google Scholar 

  20. Eguchi, T., Takaki, T., Itadani, H., & Kotani, H. (2007). RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene. Oncogene, 26, 509–520.

    Article  PubMed  CAS  Google Scholar 

  21. Saito, S., Liu, X. F., Kamijo, K., Raziuddin, R., Tatsumoto, T., Okamoto, I., et al. (2004). Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. Journal of Biological Chemistry, 279, 7169–7179.

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien, S. L., Fagan, A., Fox, E. J., Millikan, R. C., Culhane, A. C., Brennan, D. J., et al. (2007). CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. International Journal of Cancer, 120, 1434–1443.

    Article  CAS  Google Scholar 

  23. Zhu, X., Mancini, M. A., Chang, K. H., Liu, C. Y., Chen, C. F., Shan, B., et al. (1995). Characterization of a novel 350-kilodalton nuclear phosphoprotein that is specifically involved in mitotic-phase progression. Molecular and Cellular Biology, 15, 5017–5029.

    PubMed  CAS  Google Scholar 

  24. Laoukili, J., Kooistra, M. R., Bras, A., Kauw, J., Kerkhoven, R. M., Morrison, A., et al. (2005). FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biology, 7, 126–136.

    Article  PubMed  CAS  Google Scholar 

  25. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.

    Article  PubMed  CAS  Google Scholar 

  26. Libra, M., Malaponte, G., Navolanic, P. M., Gangemi, P., Bevelacqua, V., Proietti, L., et al. (2005). Analysis of BRAF mutation in primary and metastatic melanoma. Cell Cycle, 4, 1382–1384.

    PubMed  CAS  Google Scholar 

  27. Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33, 19–20.

    Article  PubMed  CAS  Google Scholar 

  28. Dumaz, N., Hayward, R., Martin, J., Ogilvie, L., Hedley, D., Curtin, J. A., et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Research, 66, 9483–9491.

    Article  PubMed  CAS  Google Scholar 

  29. Petti, C., Molla, A., Vegetti, C., Ferrone, S., Anichini, A., & Sensi, M. (2006). Coexpression of NRASQ61R and BRAFV600E in human melanoma cells activates senescence and increases susceptibility to cell-mediated cytotoxicity. Cancer Research, 66, 6503–6511.

    Article  PubMed  CAS  Google Scholar 

  30. Bottazzi, M. E., Zhu, X., Bohmer, R. M., & Assoian, R. K. (1999). Regulation of p21(cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. Journal of Cell Biology, 146, 1255–1264.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu, X., Ohtsubo, M., Bohmer, R. M., Roberts, J. M., & Assoian, R. K. (1996). Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. Journal of Cell Biology, 133, 391–403.

    Article  PubMed  CAS  Google Scholar 

  32. Bhatt, K. V., Spofford, L. S., Aram, G., McMullen, M., Pumiglia, K., & Aplin, A. E. (2005). Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene, 24, 3459–3471.

    Article  PubMed  CAS  Google Scholar 

  33. Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. Journal of Experimental Medicine, 203, 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  34. Byzova, T. V., Goldman, C. K., Pampori, N., Thomas, K. A., Bett, A., Shattil, S. J., et al. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Molecular Cell, 6, 851–860.

    PubMed  CAS  Google Scholar 

  35. Michaloglou, C., Vredeveld, L. C., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436, 720–724.

    Article  PubMed  CAS  Google Scholar 

  36. Gao, L., Feng, Y., Bowers, R., Becker-Hapak, M., Gardner, J., Council, L., et al. (2006). Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Research, 66, 7880–7888.

    Article  PubMed  CAS  Google Scholar 

  37. Kooistra, M. R., Dube, N., & Bos, J. L. (2007). Rap1: a key regulator in cell–cell junction formation. Journal of Cell Science, 120, 17–22.

    Article  PubMed  CAS  Google Scholar 

  38. Koistinen, P., Ahonen, M., Kahari, V. M., & Heino, J. (2004). alphaV integrin promotes in vitro and in vivo survival of cells in metastatic melanoma. International Journal of Cancer, 112, 61–70.

    Article  CAS  Google Scholar 

  39. Huntington, J. T., Shields, J. M., Der, C. J., Wyatt, C. A., Benbow, U., & Slingluff Jr., C. L. (2004). Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. Journal of Biological Chemistry, 279, 33168–33176.

    Article  PubMed  CAS  Google Scholar 

  40. Chu, C. L., Reenstra, W. R., Orlow, D. L., & Svoboda, K. K. (2000). Erk and PI-3 kinase are necessary for collagen binding and actin reorganization in corneal epithelia. Investigative Ophthalmology and Visual Science, 41, 3374–3382.

    PubMed  CAS  Google Scholar 

  41. Hess, A. R., & Hendrix, M. J. (2006). Focal adhesion kinase signaling and the aggressive melanoma phenotype. Cell Cycle, 5, 478–480.

    PubMed  CAS  Google Scholar 

  42. Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S., & Haluska, F. G. (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. Journal of Investigative Dermatology, 126, 154–160.

    Article  PubMed  CAS  Google Scholar 

  43. Kim, A., Oh, J. H., Park, J. M., & Chung, A. S. (2007). Methylselenol generated from selenomethionine by methioninase downregulates integrin expression and induces caspase-mediated apoptosis of B16F10 melanoma cells. Journal of Cellular Physiology, 212, 386–400.

    Article  PubMed  CAS  Google Scholar 

  44. Smalley, K. S., Haass, N. K., Brafford, P. A., Lioni, M., Flaherty, K. T., et al. (2006). Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular Cancer Therapeutics, 5, 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  45. Sumimoto, H., Miyagishi, M., Miyoshi, H., Yamagata, S., Shimizu, A., et al. (2004). Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene, 23, 6031–6039.

    Article  PubMed  CAS  Google Scholar 

  46. Liu, Z. J., Xiao, M., Balint, K., Smalley, K. S., Brafford, P., Qiu, R., et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Research, 66, 4182–4190.

    Article  PubMed  CAS  Google Scholar 

  47. Dai, D. L., Martinka, M., & Li, G. (2005). Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. Journal of Cellular Physiology, 23, 1473–1482.

    CAS  Google Scholar 

  48. Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes & Development, 19, 1974–1979.

    Article  CAS  Google Scholar 

  49. Croft, D. R., Sahai, E., Mavria, G., Li, S., Tsai, J., Lee, W. M., et al. (2004). Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Research, 64, 8994–9001.

    Article  PubMed  CAS  Google Scholar 

  50. Ruth, M. C., Xu, Y., Maxwell, I. H., Ahn, N. G., Norris, D. A., & Shellman, Y. G. (2006). RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway. Journal of Investigative Dermatology, 126, 862–868.

    Article  PubMed  CAS  Google Scholar 

  51. Stashl, J. M., Sharma, A., Cheung, M., Zimmerman, M., Cheng, J. Q., Bosenberg, M. W., et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Research, 64, 7002–7010.

    Article  Google Scholar 

  52. Govindarajan, B., Sligh, J. E., Vincent, B. J., Li, M., Canter, J. A., Nickoloff, B. J., et al. (2007). Overexpression of Akt converts radial growth melanoma to vertical growth melanoma. Journal of Clinical Investigation, 117, 719–729.

    Article  PubMed  CAS  Google Scholar 

  53. Kleer, C. G., Griffith, K. A., Sabel, M. S., Gallagher, G., van Golen, K. L., Wu, Z. F., et al. (2005). RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Research and Treatment, 93, 101–110.

    Article  PubMed  CAS  Google Scholar 

  54. Yao, H., Dashner, E. J., van Golen, C. M., & van Golen, K. L. (2006). RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility. Oncogene, 25, 2285–2296.

    Article  PubMed  CAS  Google Scholar 

  55. Shikada, Y., Yoshino, I., Okamoto, T., Fukuyama, S., Kameyama, T., & Maehara, Y. (2003). Higher expression of RhoC is related to invasiveness in non-small cell lung carcinoma. Clinical Cancer Research, 9, 5282–5286.

    PubMed  CAS  Google Scholar 

  56. Thiery, J. P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15, 740–746.

    Article  PubMed  CAS  Google Scholar 

  57. Danen, E. H., de Vries, T. J., Morandini, R., Ghanem, G. G., Ruiter, D. J., & van Muijen, G. N. (1996). E-cadherin expression in human melanoma. Melanoma Research, 6, 127–131.

    Article  PubMed  CAS  Google Scholar 

  58. Hsu, M. Y., Wheelock, M. J., Johnson, K. R., & Herlyn, M. (1996). Shifts in cadherin profiles between human normal melanocytes and melanomas. Journal of Investigative Dermatology Symposium Proceedings, 1, 188–194.

    CAS  Google Scholar 

  59. Qi, J., Chen, N., Wang, J., & Siu, C. H. (2005). Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Molecular Biology of the Cell, 16, 4386–4397.

    Article  PubMed  CAS  Google Scholar 

  60. Sandig, M., Voura, E. B., Kalnins, V. I., & Siu, C. H. (1997). Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motility and the Cytoskeleton, 38, 351–364.

    Article  PubMed  CAS  Google Scholar 

  61. Qi, J., Wang, J., Romanyuk, O., & Siu, C. H. (2006). Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Molecular Biology of the Cell, 17, 1261–1272.

    Article  PubMed  CAS  Google Scholar 

  62. Watson-Hurst, K., & Becker, D. (2006). The Role of N-Cadherin, MCAM and beta(3) integrin in melanoma progression, proliferation, migration and invasion. Cancer Biotherapy, 5, 1375–1382.

    CAS  Google Scholar 

  63. Larue, L., & Delmas, V. (2006). The WNT/Beta-catenin pathway in melanoma. Frontiers in Bioscience, 11, 733–742.

    Article  PubMed  CAS  Google Scholar 

  64. Miyagishi, M., Fujii, R., Hatta, M., Yoshida, E., Araya, N., Nagafuchi, A., et al. (2000). Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. Journal of Biological Chemistry, 275, 35170–35175.

    Article  PubMed  CAS  Google Scholar 

  65. Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nature Reviews, Molecular Cell Biology, 3, 155–166.

    Article  CAS  Google Scholar 

  66. Poser, I., Dominguez, D., de Herreros, A. G., Varnai, A., Buettner, R., & Bosserhoff, A. K. (2001). Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. Journal of Biological Chemistry, 276, 24661–24666.

    Article  PubMed  CAS  Google Scholar 

  67. Kippenberger, S., Loitsch, S., Thaci, D., Muller, J., Guschel, M., Kaufmann, R., et al. (2006). Restoration of E-cadherin sensitizes human melanoma cells for apoptosis. Melanoma Research, 16, 393–403.

    Article  PubMed  CAS  Google Scholar 

  68. Kuphal, S., Palm, H. G., Poser, I., & Bosserhoff, A. K. (2005). Snail-regulated genes in malignant melanoma. Melanoma Research, 15, 305–313.

    Article  PubMed  CAS  Google Scholar 

  69. Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.

    Article  PubMed  CAS  Google Scholar 

  70. Bienz, M. (2005). beta-Catenin: a pivot between cell adhesion and Wnt signalling. Current Biology, 15, R64–R67.

    Article  PubMed  CAS  Google Scholar 

  71. Smith, A. P., Hoek, K., & Becker, D. (2005). Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biotherapy, 4, 1018–1029.

    CAS  Google Scholar 

  72. Ma, H., Nguyen, C., Lee, K. S., & Kahn, M. (2005). Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene, 24, 3619–3631.

    Article  PubMed  CAS  Google Scholar 

  73. Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436, 117–122.

    Article  PubMed  CAS  Google Scholar 

  74. Loercher, A. E., Tank, E. M., Delston, R. B., & Harbour, J. W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. Journal of Cell Biology, 168, 35–40.

    Article  PubMed  CAS  Google Scholar 

  75. Levy, C., Khaled, M., & Fisher, D. E. (2006). MITF: master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine, 12, 406–414.

    Article  PubMed  CAS  Google Scholar 

  76. Schepsky, A., Bruser, K., Gunnarsson, G. J., Goodall, J., Hallsson, J. H., Goding, C. R., et al. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Molecular and Cellular Biology, 26, 8914–8927.

    Article  PubMed  CAS  Google Scholar 

  77. Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T., & Fisher, D. E. (1998). MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature, 391, 298–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, A.V., Danilova, O.V. & Huber, B.T. Cell cycle control and adhesion signaling pathways in the development of metastatic melanoma. Cancer Metastasis Rev 27, 707–714 (2008). https://doi.org/10.1007/s10555-008-9159-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9159-2

Keywords

Navigation