Skip to main content

Advertisement

Log in

Regulatory T cells and potential inmmunotherapeutic targets in lung cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Lung cancer and metastasis are two of the most lethal diseases globally and seldom have effective therapies. Immunotherapy is considered as one of the powerful alternatives. Regulatory T cells (Tregs) can suppress the activation of the immune system, maintain immune tolerance to self-antigens, and contribute to immunosuppression of antitumor immunity, which is critical for tumor immune evasion in epithelial malignancies, including lung cancer. The present review gives an overview of the biological functions and regulations of Tregs associated with the development of lung cancer and metastasis and explores the potentials of Treg-oriented therapeutic targets. Subsets and features of Tregs mainly include naturally occurring Tregs (nTregs) (CD4+ nTregs and CD8+ nTregs) and adaptive/induced Tregs (CD4+ iTregs and CD8+ iTregs). Tregs, especially in circulation or regional lymph nodes, play an important role in the progress and metastasis of lung cancer and are considered as therapeutic targets and biomarkers to predict the survival length and recurrence of lung cancer. Increasing understanding of Tregs’ functional mechanisms will lead to a number of clinical trials on the discovery and development of Treg-oriented new therapies. Tregs play important roles in lung cancer and metastasis, and the understanding of Tregs becomes more critical for clinical applications and therapies. Thus, Tregs and associated factors can be potential therapeutic targets for lung cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet‐Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87–108.

    Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29.

    Google Scholar 

  3. Schwartz Albiez, R., Monteiro, R., Rodriguez, M., Binder, C., & Shoenfeld, Y. (2009). Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clinical and Experimental Immunology, 158, 43–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Moriya, K., Wakabayashi, A., Shimizu, M., Tamura, H., Dan, K., & Takahashi, H. (2010). Induction of tumor-specific acquired immunity against already established tumors by selective stimulation of innate DEC-205+ dendritic cells. Cancer Immunology, Immunotherapy, 59(7), 1083–1095.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Nanni, P., Nicoletti, G., Palladini, A., Croci, S., Murgo, A., Antognoli, A., Landuzzi, L., Fabbi, M., Ferrini, S., & Musiani, P. (2007). Antimetastatic activity of a preventive cancer vaccine. Cancer Research, 67(22), 11037–11044.

    CAS  PubMed  Google Scholar 

  6. Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nature Reviews Immunology, 6(4), 295–307.

    CAS  PubMed  Google Scholar 

  7. Kost, S. E., Kakal, J. A., & Nelson, B. H. (2012). The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clinical Cancer Research, 18(11), 3022–3029.

    PubMed  Google Scholar 

  8. Tao, H., Mimura, Y., Aoe, K., Kobayashi, S., Yamamoto, H., Matsuda, E., Okabe, K., Matsumoto, T., Sugi, K., & Ueoka, H. (2012). Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer, 75(1), 95–101.

    PubMed  Google Scholar 

  9. Gershon, R. K., & Kondo, K. (1970). Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology, 18(5), 723.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Berendt, M. J., & North, R. J. (1980). T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. The Journal of Experimental Medicine, 151(1), 69.

    CAS  PubMed  Google Scholar 

  11. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science’s STKE, 299(5609), 1057.

    CAS  Google Scholar 

  12. Bluestone, J. A., & Abbas, A. K. (2003). Natural versus adaptive regulatory T cells. Nature Reviews Immunology, 3(3), 253–257.

    CAS  PubMed  Google Scholar 

  13. Bayer A. L., & Malek T. R. (2009). The role of IL-2 in the development and peripheral homeostasis of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Regulatory T Cells and Clinical Application, 1–20

  14. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., & Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science’s STKE, 322(5899), 271.

    CAS  Google Scholar 

  15. Bombardieri, M., Alunno, A., Kelly, S., Bistoni, O., Pitzalis, C., Whyte, S., Gerli, R., Nocentini, G., & Riccardi, C. (2011). Glucocorticoid induced TNF receptor related protein (GITR) is a marker of regulatory T cells: relationship with FOXP3 expression in healthy donors and in patients with rheumatoid arthritis before and after corticosteroid therapy. Annals of the Rheumatic Diseases, 70, 685–685.

    Google Scholar 

  16. Lourenço, E. V., & La Cava, A. (2011). Natural regulatory T cells in autoimmunity. Autoimmunity, 44(1), 33.

    PubMed Central  PubMed  Google Scholar 

  17. Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A., Kapranov, P., Gingeras, T. R., de St, F., Groth, B., Clayberger, C., Soper, D. M., Ziegler, S. F., & Bluestone, J. A. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. The Journal of Experimental Medicine, 203(7), 1701–1711.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C., Taflin, C., Heike, T., & Valeyre, D. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30(6), 899–911.

    CAS  PubMed  Google Scholar 

  19. Thornton, A. M., Korty, P. E., Tran, D. Q., Wohlfert, E. A., Murray, P. E., Belkaid, Y., & Shevach, E. M. (2010). Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. The Journal of Immunology, 184(7), 3433.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Gottschalk, R. A., Corse, E., & Allison, J. P. (2012). Expression of Helios in peripherally induced Foxp3+ regulatory T cells. The Journal of Immunology, 188(3), 976–980.

    CAS  PubMed  Google Scholar 

  21. Hippen, K. L., Merkel, S. C., Schirm, D. K., Sieben, C. M., Sumstad, D., Kadidlo, D. M., McKenna, D. H., Bromberg, J. S., Levine, B. L., & Riley, J. L. (2011). Massive ex vivo expansion of human natural regulatory T cells (Tregs) with minimal loss of in vivo functional activity. Science Translational Medicine, 83, 83ra41–83ra41.

    Google Scholar 

  22. Shevach, E. M., & Thornton, A. M. (2014). tTregs, pTregs, and iTregs: similarities and differences. Immunological Reviews, 259(1), 88–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Mills, K. H. G. (2004). Regulatory T cells: friend or foe in immunity to infection? Nature Reviews Immunology, 4(11), 841–855.

    CAS  PubMed  Google Scholar 

  24. Battaglia, M., Gregori, S., Bacchetta, R., & Roncarolo, M. G. (2006). Tr1 cells: from discovery to their clinical application. Seminars in Immunology, 18(2), 120–7.

    CAS  PubMed  Google Scholar 

  25. Maynard, C. L., Harrington, L. E., Janowski, K. M., Oliver, J. R., Zindl, C. L., Rudensky, A. Y., & Weaver, C. T. (2007). Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nature Immunology, 8(9), 931–941.

    CAS  PubMed  Google Scholar 

  26. Mandapathil, M., & Whiteside, T. L. (2011). Targeting human inducible regulatory T cells (Tr1) in patients with cancer: blocking of adenosine-prostaglandin E2 cooperation. Expert Opinion on Biological Therapy, 11(9), 1203–1214.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Brun, V., Bastian, H., Neveu, V., & Foussat, A. (2009). Clinical grade production of IL-10 producing regulatory Tr1 lymphocytes for cell therapy of chronic inflammatory diseases. International Immunopharmacology, 9(5), 609–613.

    CAS  PubMed  Google Scholar 

  28. Santos, L., Al-Sabbagh, A., Londono, A., & Weiner, H. L. (1994). Oral tolerance to myelin basic protein induces regulatory TGF-β-secreting T cells in Peyer’s patches of SJL mice. Cellular Immunology, 157(2), 439–447.

    CAS  PubMed  Google Scholar 

  29. Weiner, H. L. (2001). Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunological Reviews, 182(1), 207–214.

    CAS  PubMed  Google Scholar 

  30. Carrier, Y., Yuan, J., Kuchroo, V. K., & Weiner, H. L. (2007). Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-β T cell-transgenic mice. The Journal of Immunology, 178(1), 179.

    CAS  PubMed  Google Scholar 

  31. Curotto de Lafaille, M. A., & Lafaille, J. J. (2009). Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity, 30(5), 626–635.

    CAS  PubMed  Google Scholar 

  32. Liu, V. C., Wong, L. Y., Jang, T., Shah, A. H., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B. A., & Lee, C. (2007). Tumor evasion of the immune system by converting CD4+ CD25 T cells into CD4+ CD25+ T regulatory cells: role of tumor-derived TGF-β. The Journal of Immunology, 178(5), 2883.

    CAS  PubMed  Google Scholar 

  33. Al‐Qahtani, D., Anil, S., & Rajendran, R. (2011). Tumour infiltrating CD25+ FoxP3+ regulatory T cells (Tregs) relate to tumour grade and stromal inflammation in oral squamous cell carcinoma. Journal of Oral Pathology & Medicine, 40(8), 636–642.

    Google Scholar 

  34. Mayer, C. T., Floess, S., Baru, A. M., Lahl, K., Huehn, J., & Sparwasser, T. (2011). CD8+ Foxp3+ T cells share developmental and phenotypic features with classical CD4+ Foxp3+ regulatory T cells but lack potent suppressive activity. European Journal of Immunology, 41(3), 716–725.

    CAS  PubMed  Google Scholar 

  35. Wang, R. F. (2008). CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Human Immunology, 69(11), 811–814.

    CAS  PubMed  Google Scholar 

  36. Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., & June, C. H. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Research, 61(12), 4766–4772.

    CAS  PubMed  Google Scholar 

  37. Woo, E. Y., Yeh, H., Chu, C. S., Schlienger, K., Carroll, R. G., Riley, J. L., Kaiser, L. R., & June, C. H. (2002). Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. Journal of Immunology, 168(9), 4272–4276.

    CAS  Google Scholar 

  38. Okita, R., Saeki, T., Takashima, S., Yamaguchi, Y., & Toge, T. (2005). CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncology Reports, 14(5), 1269–1273.

    CAS  PubMed  Google Scholar 

  39. Meloni, F., Morosini, M., Solari, N., Passadore, I., Nascimbene, C., Novo, M., Ferrari, M., Cosentino, M., Marino, F., Pozzi, E., & Fietta, A. M. (2006). Foxp3 expressing CD4+ CD25+ and CD8+CD28 T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Human Immunology, 67(1–2), 1–12.

    CAS  PubMed  Google Scholar 

  40. Wang, Y. Y., He, X. Y., Cai, Y. Y., Wang, Z. J., & Lu, S. H. (2011). The variation of CD4+CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Targeted Oncology, 6(3), 147–154.

    PubMed  Google Scholar 

  41. Su, Y. J., Ren, K., Li, H., Ren, X. B., & Wang, C. L. (2007). Clinical significance of CD4+ CD25+ regulatory T-cells detection in tumor-draining lymph nodes of nonsmall cell lung cancer patients. Zhonghua Zhong Liu Za Zhi, 29(12), 922–926.

    PubMed  Google Scholar 

  42. Ju, S., Qiu, H., Zhou, X., Zhu, B., Lv, X., Huang, X., Li, J., Zhang, Y., Liu, L., Ge, Y., Johnson, D. E., & Shu, Y. (2009). CD13+CD4+CD25hi regulatory T cells exhibit higher suppressive function and increase with tumor stage in non-small cell lung cancer patients. Cell Cycle, 8(16), 2578–2585.

    CAS  PubMed  Google Scholar 

  43. Karagoz, B., Bilgi, O., Gumus, M., Erikci, A. A., Sayan, O., Turken, O., Kandemir, E. G., Ozturk, A., & Yaylaci, M. (2010). CD8+CD28 cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Medical Oncology, 27(1), 29–33.

    PubMed  Google Scholar 

  44. Koyama, K., Kagamu, H., Miura, S., Hiura, T., Miyabayashi, T., Itoh, R., Kuriyama, H., Tanaka, H., Tanaka, J., Yoshizawa, H., Nakata, K., & Gejyo, F. (2008). Reciprocal CD4+ T-cell balance of effector CD62Llow CD4+ and CD62LhighCD25+ CD4+ regulatory T cells in small cell lung cancer reflects disease stage. Clinical Cancer Research, 14(21), 6770–6779.

    CAS  PubMed  Google Scholar 

  45. Wang W., Hodkinson P., McLaren F., Mackinnon A., Wallace W., Howie S., & Sethi T. (2012). Small cell lung cancer tumour cells induce regulatory T lymphocytes, and patient survival correlates negatively with FOXP3(+) cells in tumour infiltrate. Int J Cancer, 15;131(6):E928–37.

  46. Hasegawa, T., Suzuki, H., Yamaura, T., Muto, S., Okabe, N., Osugi, J., Hoshino, M., Higuchi, M., Ise, K., & Gotoh, M. (2014). Prognostic value of peripheral and local forkhead box P3+ regulatory T cells in patients with non-small-cell lung cancer. Molecular and Clinical Oncology, 2(5), 685–694.

    PubMed Central  PubMed  Google Scholar 

  47. Hanagiri, T., Shigematsu, Y., Shinohara, S., Takenaka, M., Oka, S., Chikaishi, Y., Nagata, Y., Iwata, T., Uramoto, H., & So, T. (2013). Clinical significance of the frequency of regulatory T cells in regional lymph node lymphocytes as a prognostic factor for non-small-cell lung cancer. Lung Cancer, 81(3), 475–479.

    PubMed  Google Scholar 

  48. Black, C. C., Turk, M. J., Dragnev, K., & Rigas, J. R. (2013). Adenocarcinoma contains more immune tolerance regulatory T-cell lymphocytes (versus squamous carcinoma) in non-small-cell lung cancer. Lung, 191(3), 265–270.

    CAS  PubMed  Google Scholar 

  49. Kinoshita, T., Ishii, G., Hiraoka, N., Hirayama, S., Yamauchi, C., Aokage, K., Hishida, T., Yoshida, J., Nagai, K., & Ochiai, A. (2013). Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer Science, 104(4), 409–415.

    CAS  PubMed  Google Scholar 

  50. Li, J.-Y., Duan, X.-F., Wang, L.-P., Xu, Y.-J., Huang, L., Zhang, T.-F., Liu, J.-Y., Li, F., Zhang, Z., & Yue, D.-L. (2014). Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. Journal of Immunology Research, 2014, 286170. doi:10.1155/2014/286170.

    PubMed Central  PubMed  Google Scholar 

  51. Teng, M. W. L., Ritchie, D. S., Neeson, P., & Smyth, M. J. (2011). Biology and clinical observations of regulatory T cells in cancer immunology. Cancer Immunology and Immunotherapy, 61–95.

  52. Peggs, K. S., Quezada, S. A., Korman, A. J., & Allison, J. P. (2006). Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Current Opinion in Immunology, 18(2), 206–213.

    CAS  PubMed  Google Scholar 

  53. Keilholz, U. (2008). CTLA-4: negative regulator of the immune response and a target for cancer therapy. Journal of Immunotherapy, 31(5), 431.

    CAS  PubMed  Google Scholar 

  54. Ackerman, A., Klein, O., McDermott, D.F., Wang, W., Ibrahim, N., Lawrence, D.P., Gunturi, A., Flaherty, K.T., Hodi, F.S., Kefford, R., Menzies, A.M., Atkins, M.B., Long, G.V., & Sullivan, R.J. (2014). Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer. 1;120(11):1695–701.

  55. Erfani, N., Mehrabadi, S. M., Ghayumi, M. A., Haghshenas, M. R., Mojtahedi, Z., Ghaderi, A., & Amani, D. (2012). Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer, 77(2), 306–11.

    PubMed  Google Scholar 

  56. Karabon, L., Pawlak, E., Tomkiewicz, A., Jedynak, A., Passowicz-Muszynska, E., Zajda, K., Jonkisz, A., Jankowska, R., Krzakowski, M., & Frydecka, I. (2011). CTLA-4, CD28, and ICOS gene polymorphism associations with non-small-cell lung cancer. Human Immunology, 72(10), 947–54.

    CAS  PubMed  Google Scholar 

  57. Mellor, A. L., & Munn, D. H. (2004). IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Reviews Immunology, 4(10), 762–774.

    CAS  PubMed  Google Scholar 

  58. Salvi S., Fontana V., Boccardo S., Merlo D. F., Margallo E., Laurent S., Morabito A., Rijavec E., Dal Bello M. G., & Mora M. (2012). Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunology, Immunotherapy, 1–10.

  59. Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736.

    CAS  PubMed  Google Scholar 

  60. Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., Gonzalez, R., Robert, C., Schadendorf, D., & Hassel, J. C. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711–723.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C., Lebbe, C., Baurain, J.-F., Testori, A., & Grob, J.-J. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. New England Journal of Medicine, 364(26), 2517–2526.

    CAS  PubMed  Google Scholar 

  62. Lynch, T. J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., Sebastian, M., Neal, J., Lu, H., & Cuillerot, J.-M. (2012). Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology, 30(17), 2046–2054.

    CAS  PubMed  Google Scholar 

  63. Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A., & Formenti, S. C. (2013). An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunology Research, 1(6), 365–372.

    PubMed Central  PubMed  Google Scholar 

  64. Reck, M., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., Sebastian, M., Lu, H., Cuillerot, J.-M., & Lynch, T. (2013). Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Annals of Oncology, 24(1), 75–83.

    CAS  PubMed  Google Scholar 

  65. Kamphorst, A. O., & Ahmed, R. (2013). Manipulating the PD-1 pathway to improve immunity. Current Opinion in Immunology, 25(3), 381–388.

    CAS  PubMed  Google Scholar 

  66. Waki, K., Yamada, T., Yoshiyama, K., Terazaki, Y., Sakamoto, S., Matsueda, S., Komatsu, N., Sugawara, S., Takamori, S., & Itoh, K. (2014). PD-1 expression on peripheral blood T-cell subsets correlates with prognosis in non-small cell lung cancer. Cancer Science, 105(10), 1229–1235.

    CAS  PubMed  Google Scholar 

  67. Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2012). Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 24(2), 207–212.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhang, Y., Huang, S., Gong, D., Qin, Y., & Shen, Q. (2010). Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+T lymphocytes in human non-small cell lung cancer. Cellular & Molecular Immunology, 7(5), 389–395.

    Google Scholar 

  69. Lipson, E. J., Sharfman, W. H., Drake, C. G., Wollner, I., Taube, J. M., Anders, R. A., Xu, H., Yao, S., Pons, A., & Chen, L. (2013). Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clinical Cancer Research, 19(2), 462–468.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Gettinger, S., Horn, L., Gandhi, L., Spigel, D., Antonia, S., Rizvi, N., Powderly, J., Heist, R., Carvajal, R., & Jackman, D. (2014). Long-term survival, clinical activity, and safety of nivolumab (anti-PD-1; BMS-936558, ONO-4538) in patients (pts) with advanced non-small cell lung cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 90(5), S34.

    Google Scholar 

  71. Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., & Atkins, M. B. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Antonia S. J., Gettinger S., Chow L. Q., Juergens R., Borghaei H., Shen Y., Harbison C., Chen A. C., Ready N. E., & Rizvi N. A. (2014). Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line non-small cell lung cancer (NSCLC): interim phase 1 results. Journal of clinical oncology, 32,5s.

  73. Okamura, T., Fujio, K., Sumitomo, S., & Yamamoto, K. (2012). Roles of LAG3 and EGR2 in regulatory T cells. Annals of the Rheumatic Diseases, 71(Suppl 2), i96–i100.

    PubMed  Google Scholar 

  74. Gandhi, M. K., Lambley, E., Duraiswamy, J., Dua, U., Smith, C., Elliott, S., Gill, D., Marlton, P., Seymour, J., & Khanna, R. (2006). Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood, 108(7), 2280.

    CAS  PubMed  Google Scholar 

  75. Prigent, P., Dréano, M., & Triebel, F. (1999). Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. European Journal of Immunology, 29(12), 3867–3876.

    CAS  PubMed  Google Scholar 

  76. Brignone, C., Grygar, C., Marcu, M., Perrin, G., & Triebel, F. (2007). IMP321 (sLAG-3) safety and T cell response potentiation using an influenza vaccine as a model antigen: a single-blind phase I study. Vaccine, 25(24), 4641–4650.

    CAS  PubMed  Google Scholar 

  77. Brignone, C., Escudier, B., Grygar, C., Marcu, M., & Triebel, F. (2009). A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clinical Cancer Research, 15(19), 6225–6231.

    CAS  PubMed  Google Scholar 

  78. Brignone, C., Gutierrez, M., Mefti, F., Brain, E., Jarcau, R., Cvitkovic, F., Bousetta, N., Medioni, J., Gligorov, J., & Grygar, C. (2010). First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. Journal of Translational Medicine, 8(1), 71.

    PubMed Central  PubMed  Google Scholar 

  79. Camisaschi, C., Casati, C., Rini, F., Perego, M., De Filippo, A., Triebel, F., Parmiani, G., Belli, F., Rivoltini, L., & Castelli, C. (2010). LAG-3 expression defines a subset of CD4+ CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. The Journal of Immunology, 184(11), 6545–6551.

    CAS  PubMed  Google Scholar 

  80. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., & Sakaguchi, S. (2002). Stimulation of CD25+ CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology, 3(2), 135–142.

    CAS  PubMed  Google Scholar 

  81. Cohen, A. D., Schaer, D. A., Liu, C., Li, Y., Hirschhorn-Cymmerman, D., Kim, S. C., Diab, A., Rizzuto, G., Duan, F., & Perales, M. A. (2010). Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. Plos One, 5(5), e10436.

    PubMed Central  PubMed  Google Scholar 

  82. Zhou, P., L’italien, L., Hodges, D., & Schebye, X. M. (2007). Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors. The Journal of Immunology, 179(11), 7365–7375.

    CAS  PubMed  Google Scholar 

  83. Houot, R., & Levy, R. (2009). T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood, 113(15), 3546–3552.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Cohen, A. D., Diab, A., Perales, M. A., Wolchok, J. D., Rizzuto, G., Merghoub, T., Huggins, D., Liu, C., Turk, M. J., & Restifo, N. P. (2006). Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity. Cancer Research, 66(9), 4904.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Imai, N., Ikeda, H., Tawara, I., Wang, L., Nishikawa, H., Kato, T., & Shiku, H. (2009). Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression. Cancer Science, 100(7), 1317–1325.

    CAS  PubMed  Google Scholar 

  86. Mitsui, J., Nishikawa, H., Muraoka, D., Wang, L., Noguchi, T., Sato, E., Kondo, S., Allison, J. P., Sakaguchi, S., & Old, L. J. (2010). Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clinical Cancer Research, 16(10), 2781.

    CAS  PubMed  Google Scholar 

  87. Pruitt, S. K., Boczkowski, D., de Rosa, N., Haley, N. R., Morse, M. A., Tyler, D. S., Dannull, J., & Nair, S. (2011). Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. European Journal of Immunology, 41(12), 3553–63.

    CAS  PubMed  Google Scholar 

  88. Stephens, G. L., McHugh, R. S., Whitters, M. J., Young, D. A., Luxenberg, D., Carreno, B. M., Collins, M., & Shevach, E. M. (2004). Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+ CD25+ T cells. The Journal of Immunology, 173(8), 5008–5020.

    CAS  PubMed  Google Scholar 

  89. Côté, A. L., Zhang, P., O’Sullivan, J. A., Jacobs, V. L., Clemis, C. R., Sakaguchi, S., Guevara-Patiño, J. A., & Turk, M. J. (2011). Stimulation of the glucocorticoid-induced TNF receptor family-related receptor on CD8 T cells induces protective and high-avidity T cell responses to tumor-specific antigens. The Journal of Immunology, 186(1), 275.

    PubMed Central  PubMed  Google Scholar 

  90. Joetham, A., Ohnishi, H., Okamoto, M., Takeda, K., Schedel, M., Domenico, J., Dakhama, A., & Gelfand, E. W. (2012). Loss of T regulatory cell suppression following signaling through glucocorticoid-induced tumor necrosis receptor (GITR) is dependent on c-Jun N-terminal kinase activation. Journal of Biological Chemistry, 287(21), 17100–17108.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Haskó, G., Linden, J., Cronstein, B., & Pacher, P. (2008). Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Reviews Drug Discovery, 7(9), 759–770.

    PubMed Central  PubMed  Google Scholar 

  92. Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., Lang, S., Jackson, E. K., Gorelik, E., & Whiteside, T. L. (2010). Generation and accumulation of immunosuppressive adenosine by human CD4+ CD25highFOXP3+ regulatory T cells. Journal of Biological Chemistry, 285(10), 7176.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Sitkovsky, M., Lukashev, D., Deaglio, S., Dwyer, K., Robson, S., & Ohta, A. (2008). Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. British Journal of Pharmacology, 153(S1), S457–S464.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Häusler S. F. M., Montalbán del Barrio I., Strohschein J., Anoop Chandran P., Engel J. B., Hönig A., Ossadnik M., Horn E., Fischer B., & Krockenberger M. (2011). Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunology, Immunotherapy, 1–14.

  95. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D., & Tabi, Z. (2011). Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. The Journal of Immunology, 187(2), 676.

    CAS  PubMed  Google Scholar 

  96. Hughes, P. D., Belz, G. T., Fortner, K. A., Budd, R. C., Strasser, A., & Bouillet, P. (2008). Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity, 28(2), 197–205.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Janssens, W., Carlier, V., Wu, B., VanderElst, L., Jacquemin, M. G., & Saint-Remy, J. M. R. (2003). CD4+ CD25+ T cells lyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. The Journal of Immunology, 171(9), 4604.

    CAS  PubMed  Google Scholar 

  98. Strauss, L., Bergmann, C., Gooding, W., Johnson, J. T., & Whiteside, T. L. (2007). The frequency and suppressor function of CD4+ CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 13(21), 6301–6311.

    CAS  PubMed  Google Scholar 

  99. Chen, A., Liu, S., Park, D., Kang, Y., & Zheng, G. (2007). Depleting intratumoral CD4+ CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Research, 67(3), 1291.

    CAS  PubMed  Google Scholar 

  100. Gritzapis, A. D., Voutsas, I. F., Lekka, E., Papamichail, M., & Baxevanis, C. N. (2010). Peptide vaccination breaks tolerance to HER-2/neu by generating vaccine-specific FasL+ CD4+ T cells: first evidence for intratumor apoptotic regulatory T cells. Cancer Research, 70(7), 2686.

    CAS  PubMed  Google Scholar 

  101. Reardon, C., Wang, A., & McKay, D. M. (2008). Transient local depletion of Foxp3+ regulatory T cells during recovery from colitis via Fas/Fas ligand-induced death. The Journal of Immunology, 180(12), 8316–8326.

    CAS  PubMed  Google Scholar 

  102. Kontani, K., Sawai, S., Hanaoka, J., Tezuka, N., Inoue, S., & Fujino, S. (2001). Involvement of granzyme B and perforin in suppressing nodal metastasis of cancer cells in breast and lung cancers. European Journal of Surgical Oncology, 27(2), 180–186.

    CAS  PubMed  Google Scholar 

  103. Cao, X., Fehniger, T. A., Cai, S. F., & Ley, T. J. (2006). The unique roles of murine granzymes (Gzm) A and B for NK-dependent tumor cell killing and regulatory T cell control of NK cells. Proceedings of the American Association for Cancer Research, 2006(1), 149.

    Google Scholar 

  104. Ashley, C. W., & Baecher-Allan, C. (2009). Cutting edge: responder T cells regulate human DR+ effector regulatory T cell activity via granzyme B. The Journal of Immunology, 183(8), 4843–4847.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Soriano, C., Mukaro, V., Hodge, G., Ahern, J., Holmes, M., Jersmann, H., Moffat, D., Meredith, D., Jurisevic, C., & Reynolds, P. N. (2012). Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion? Lung Cancer, 77(1), 38–45.

    PubMed  Google Scholar 

  106. Czystowska, M., Strauss, L., Bergmann, C., Szajnik, M., Rabinowich, H., & Whiteside, T. L. (2010). Reciprocal granzyme/perforin-mediated death of human regulatory and responder T cells is regulated by interleukin-2 (IL-2). Journal of Molecular Medicine, 88(6), 577–588.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Mader, J. S., Ewen, C., Hancock, R. E. W., & Bleackley, R. C. (2011). The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in regulatory T cells. Journal of Immunotherapy, 34(3), 229.

    CAS  PubMed  Google Scholar 

  108. Bruder, D., Probst‐Kepper, M., Westendorf, A. M., Geffers, R., Beissert, S., Loser, K., von Boehmer, H., Buer, J., & Hansen, W. (2004). Frontline: neuropilin-1: a surface marker of regulatory T cells. European Journal of Immunology, 34(3), 623–630.

    CAS  PubMed  Google Scholar 

  109. Mizui, M., & Kikutani, H. (2008). Neuropilin-1: the glue between regulatory T cells and dendritic cells? Immunity, 28(3), 302–303.

    CAS  PubMed  Google Scholar 

  110. Glinka, Y., & Prud’homme, G. J. (2008). Neuropilin-1 is a receptor for transforming growth factor β-1, activates its latent form, and promotes regulatory T cell activity. Journal of Leukocyte Biology, 84(1), 302–310.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Battaglia, A., Buzzonetti, A., Monego, G., Peri, L., Ferrandina, G., Fanfani, F., Scambia, G., & Fattorossi, A. (2008). Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology, 123(1), 129–138.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Jubb, A. M., Strickland, L. A., Liu, S. D., Mak, J., Schmidt, M., & Koeppen, H. (2012). Neuropilin-1 expression in cancer and development. The Journal of Pathology, 226(1), 50–60.

    CAS  PubMed  Google Scholar 

  113. Pyzik, M., & Piccirillo, C. (2007). TGF-ß1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. Journal of Leukocyte Biology, 82(2), 335–346.

    CAS  PubMed  Google Scholar 

  114. Ni, X., Sui, H., Liu, Y., Ke, S., Wang, Y., & Gao, F. (2012). TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncology Reports, 28(2), 615.

    CAS  PubMed  Google Scholar 

  115. Roman, C. D., Morrow, J., Whitehead, R., & Beauchamp, R. D. (2002). Induction of cyclooxygenase-2 and invasiveness by transforming growth factor-β 1 in immortalized mouse colonocytes expressing oncogenic ras. Journal of Gastrointestinal Surgery, 6(3), 304–309.

    PubMed  Google Scholar 

  116. Takizawa, H., Tanaka, M., Takami, K., Ohtoshi, T., Ito, K., Satoh, M., Okada, Y., Yamasawa, F., Nakahara, K., & Umeda, A. (2001). Increased expression of transforming growth factor-β 1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). American Journal of Respiratory and Critical Care Medicine, 163(6), 1476–1483.

    CAS  PubMed  Google Scholar 

  117. Uva, V., Sfondrini, L., Triulzi, T., Casalini, P., Tagliabue, E., & Balsari, A. (2015). FOXP3 expression in tumor cells and its role in cancer progression. Cancer Research, 75(8), 1703–13.

    Google Scholar 

  118. Um, S. W., Lee, S. H., Kim, H., Kwon, O. J., Kang, J. S., & Lee, W. J. (2011). The regulation of FOXP3 expression by the treatment of TGF-β and the modification of DNA methylation in lung cancer cell lines. Tuberculosis and Respiratory Diseases, 70(3), 206–217.

    Google Scholar 

  119. Marconi, P., Patel, K., Thimothy, L., Buchanan, S., Liptay, M., Coon, J., Bonomi, P., & Borgia, J. (2010). Modulation of the epithelial-to-mesenchymal-like transition by BMP7 and TGF-β in non-small cell lung cancer cell lines in vitro. Journal of Clinical Oncology, 28(15), e21016.

    Google Scholar 

  120. Cao, M., Seike, M., Soeno, C., Mizutani, H., Kitamura, K., Minegishi, Y., Noro, R., Yoshimura, A., Cai, L., & Gemma, A. (2012). MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. International Journal of Oncology, 41(3), 869–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Halder, S. K., Cho, Y. J., Datta, A., Anumanthan, G., Ham, A. J. L., Carbone, D. P., & Datta, P. K. (2011). Elucidating the mechanism of regulation of transforming growth factor β type II receptor expression in human lung cancer cell lines. Neoplasia, 13(10), 912.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Sharma, S., Stolina, M., Lin, Y., Gardner, B., Miller, P. W., Kronenberg, M., & Dubinett, S. M. (1999). T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. The Journal of Immunology, 163(9), 5020.

    CAS  PubMed  Google Scholar 

  123. Hatanaka, H., Abe, Y., Kamiya, T., Morino, F., Nagata, J., Tokunaga, T., Oshika, Y., Suemizu, H., Kijima, H., & Tsuchida, T. (2000). Clinical implications of interleukin (IL)-10 induced by non-small-cell lung cancer. Annals of Oncology, 11(7), 815–819.

    CAS  PubMed  Google Scholar 

  124. Shih, C. M., Lee, Y. L., Chiou, H. L., Hsu, W. F., Chen, W. E., Chou, M. C., & Lin, L. Y. (2005). The involvement of genetic polymorphism of IL-10 promoter in non-small cell lung cancer. Lung Cancer, 50(3), 291–297.

    PubMed  Google Scholar 

  125. Huang, M., Sharma, S., Mao, J. T., & Dubinett, S. M. (1996). Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production. The Journal of Immunology, 157(12), 5512–5520.

    CAS  PubMed  Google Scholar 

  126. Mocellin, S., Marincola, F. M., & Young, H. A. (2005). Interleukin-10 and the immune response against cancer: a counterpoint. Journal of Leukocyte Biology, 78(5), 1043–1051.

    CAS  PubMed  Google Scholar 

  127. Soria, J. C., Moon, C., Kemp, B. L., Liu, D. D., Feng, L., Tang, X., Chang, Y. S., Mao, L., & Khuri, F. R. (2003). Lack of interleukin-10 expression could predict poor outcome in patients with stage I non-small cell lung cancer. Clinical Cancer Research, 9(5), 1785–1791.

    CAS  PubMed  Google Scholar 

  128. Miotto, D., Cascio, N. L., Stendardo, M., Querzoli, P., Pedriali, M., De Rosa, E., Fabbri, L., Mapp, C., & Boschetto, P. (2010). CD8+ T cells expressing IL-10 are associated with a favourable prognosis in lung cancer. Lung Cancer, 69(3), 355–360.

    CAS  PubMed  Google Scholar 

  129. Castellani, M., Anogeianaki, A., Felaco, P., Toniato, E., De Lutiis, M., Shaik, B., Fulcheri, M., Vecchiet, J., Tetè, S., & Salini, V. (2010). IL-35, an anti-inflammatory cytokine which expands CD4+ CD25+ Treg cells. Journal of Biological Regulators and Homeostatic Agents, 24(2), 131.

    PubMed  Google Scholar 

  130. Bardel, E., Larousserie, F., Charlot-Rabiega, P., Coulomb-L’Herminé, A., & Devergne, O. (2008). Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. The Journal of Immunology, 181(10), 6898–6905.

    CAS  PubMed  Google Scholar 

  131. Collison, L. W., Pillai, M. R., Chaturvedi, V., & Vignali, D. A. A. (2009). Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. The Journal of Immunology, 182(10), 6121–6128.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Collison, L. W., Chaturvedi, V., Henderson, A. L., Giacomin, P. R., Guy, C., Bankoti, J., Finkelstein, D., Forbes, K., Workman, C. J., & Brown, S. A. (2010). IL-35-mediated induction of a potent regulatory T cell population. Nature Immunology, 11(12), 1093–1101.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Koh, H. S., Lee, C., Lee, K. S., Ham, C. S., Seong, R. H., Kim, S. S., & Jeon, S. H. (2008). CD7 expression and galectin-1-induced apoptosis of immature thymocytes are directly regulated by NF-κB upon T-cell activation. Biochemical and Biophysical Research Communications, 370(1), 149–153.

    CAS  PubMed  Google Scholar 

  134. Miller, M. C., Nesmelova, I. V., Platt, D., Klyosov, A., & Mayo, K. H. (2009). The carbohydrate-binding domain on galectin-1 is more extensive for a complex glycan than for simple saccharides: implications for galectin–glycan interactions at the cell surface. Biochemical Journal, 421(Pt 2), 211.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Wang, J., Lu, Z. H., Gabius, H. J., Rohowsky-Kochan, C., Ledeen, R. W., & Wu, G. (2009). Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. The Journal of Immunology, 182(7), 4036–4045.

    CAS  PubMed  Google Scholar 

  136. Blaskó, A., Fajka-Boja, R., Ion, G., & Monostori, É. (2011). How does it act when soluble? Critical evaluation of mechanism of galectin-1 induced T-cell apoptosis. Acta Biologica Hungarica, 62(1), 106–111.

    PubMed  Google Scholar 

  137. Liu, F. T., & Rabinovich, G. A. (2005). Galectins as modulators of tumour progression. Nature Reviews Cancer, 5(1), 29–41.

    CAS  PubMed  Google Scholar 

  138. Ito K., & Ralph S. J. (2012). Inhibiting galectin-1 reduces murine lung metastasis with increased CD4+ and CD8+ T cells and reduced cancer cell adherence. Clinical and Experimental Metastasis, 1–12.

  139. Kuo, P.-L., Hung, J.-Y., Huang, S.-K., Chou, S.-H., Cheng, D.-E., Jong, Y.-J., Hung, C.-H., Yang, C.-J., Tsai, Y.-M., & Hsu, Y.-L. (2011). Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. The Journal of Immunology, 186(3), 1521–1530.

    CAS  PubMed  Google Scholar 

  140. Brandt, B., Abou-Eladab, E., Tiedge, M., & Walzel, H. (2010). Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death. Cell Death & Disease, 1(2), e23.

    CAS  Google Scholar 

  141. Baratelli, F., Lin, Y., Zhu, L., Yang, S.-C., Heuzé-Vourc’h, N., Zeng, G., Reckamp, K., Dohadwala, M., Sharma, S., & Dubinett, S. M. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. The Journal of Immunology, 175(3), 1483–1490.

    CAS  PubMed  Google Scholar 

  142. Sharma, S., Yang, S.-C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., Huang, M., Batra, R. K., & Dubinett, S. M. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220.

    CAS  PubMed  Google Scholar 

  143. Baratelli, F., Lee, J. M., Hazra, S., Lin, Y., Walser, T. C., Schaue, D., Pak, P. S., Elashoff, D., Reckamp, K., & Zhang, L. (2010). PGE2 contributes to TGF-β induced T regulatory cell function in human non-small cell lung cancer. American Journal of Translational Research, 2(4), 356.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Soontrapa, K., Honda, T., Sakata, D., Yao, C., Hirata, T., Hori, S., Matsuoka, T., Kita, Y., Shimizu, T., & Kabashima, K. (2011). Prostaglandin E2–prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proceedings of the National Academy of Sciences, 108(16), 6668–6673.

    CAS  Google Scholar 

  145. Yukawa, T., Shimizu, K., Maeda, A., Yasuda, K., Saisho, S., Okita, R., & Nakata, M. (2015). Cyclooxygenase-2 genetic variants influence intratumoral infiltration of Foxp3-positive regulatory T cells in non-small cell lung cancer. Oncology Reports, 33(1), 74–80.

    CAS  PubMed  Google Scholar 

  146. Dohadwala, M., Yang, S.-C., Luo, J., Sharma, S., Batra, R. K., Huang, M., Lin, Y., Goodglick, L., Krysan, K., & Fishbein, M. C. (2006). Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and Snail in non-small cell lung cancer. Cancer Research, 66(10), 5338–5345.

    CAS  PubMed  Google Scholar 

  147. Dohadwala, M., Batra, R. K., Luo, J., Lin, Y., Krysan, K., Põld, M., Sharma, S., & Dubinett, S. M. (2002). Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. Journal of Biological Chemistry, 277(52), 50828–50833.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Krysan, K., Reckamp, K. L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M., & Dubinett, S. M. (2005). Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Research, 65(14), 6275–6281.

    CAS  PubMed  Google Scholar 

  149. Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-βArrestin1-c-Src signalsome. Molecular Cancer Research, 8(4), 569–577.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Horn, L., Milne, G., Sandler, A., Morrow, J., Carbone, D., Shyr, Y., Hayes, A., Campbell, N., & Johnson, D. H. (2009). Urine PGE-M to assess prostaglandin E2 (PGE2) levels in non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 27, e19026.

    Google Scholar 

Download references

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), The National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), The Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation Funding of Shanghai Institute of Clinical Bioinformatics, and Ministry of Education, Academic Special Science and Research Foundation for PhD Education (20130071110043).

Authors’ contributions

DZ contributed to the collection of data, discussion, writing, and review of figures, and ZHC, DCW, and XDW contributed to the revision, structure design, manuscript preparation, and discussion.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang.

Additional information

Ding Zhang and Zhihong Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chen, Z., Wang, D.C. et al. Regulatory T cells and potential inmmunotherapeutic targets in lung cancer. Cancer Metastasis Rev 34, 277–290 (2015). https://doi.org/10.1007/s10555-015-9566-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9566-0

Keywords

Navigation