Skip to main content

Advertisement

Log in

Expression of TNFR2 by regulatory T cells in peripheral blood is correlated with clinical pathology of lung cancer patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD4+FoxP3+ regulatory T cells (Tregs) represent a major cellular mediator of cancer immune evasion. The expression of tumor necrosis factor receptor type II (TNFR2) on Tregs is reported to identify the maximally suppressive Treg population in both mice and human. We therefore investigated the phenotype and function of TNFR2+ Tregs present in the peripheral blood (PB) of 43 lung cancer patients. Further, the association of TNFR2 expression on Tregs with clinicopathological factors was analyzed. The results showed that in the PB of lung cancer patients, Tregs expressed markedly higher levels of TNFR2 than conventional T cells (Tconvs). Expression of TNFR2 appeared to correlate better than CD25+ and CD127 with FoxP3 expression. PB TNFR2+ Tregs in lung cancer patients were more proliferative and expressed higher levels of the immunosuppressive molecule CTLA-4, and consequently more potently suppressed IFNγ production by cocultured CD8 CTLs. More importantly, higher TNFR2 expression levels on Tregs were associated with lymphatic invasion, distant metastasis and more advanced clinical stage of lung cancer patients. Therefore, our study suggests that TNFR2+ Tregs play a role in promoting tumor progressive metastasis and expression of TNFR2 by PB Tregs may prove to be a useful prognostic marker in lung cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

CTLs:

Cytotoxic T lymphocytes

CTLA-4:

Cytotoxic T lymphocyte-associated antigen 4

ELISA:

Enzyme-linked immunosorbent assay

FoxP3:

Forkhead box P3

IFN:

Interferon

IgG:

Immunoglobulin G

MFI:

Mean fluorescence intensity

PB:

Peripheral blood

PBMCs:

Peripheral blood mononuclear cells

Tconvs:

Conventional T cells

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

TNFR1:

Tumor necrosis factor receptor type I

TNFR2:

Tumor necrosis factor receptor type II

Tregs:

CD4+FoxP3+ regulatory T cells

References

  1. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M, Ferrari M, Cosentino M, Marino F, Pozzi E, Fietta AM (2006) Foxp3 expressing CD4+CD25+and CD8+CD28 T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67(1–2):1–12. doi:10.1016/j.humimm.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  2. Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, Okabe K, Matsumoto T, Sugi K, Ueoka H (2012) Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 75(1):95–101. doi:10.1016/j.lungcan.2011.06.002

    Article  PubMed  Google Scholar 

  3. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211–5218

    CAS  PubMed  Google Scholar 

  4. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194(6):823–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9(2):606–612

    PubMed  Google Scholar 

  6. Erfani N, Mehrabadi SM, Ghayumi MA, Haghshenas MR, Mojtahedi Z, Ghaderi A, Amani D (2012) Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer 77(2):306–311. doi:10.1016/j.lungcan.2012.04.011

    Article  PubMed  Google Scholar 

  7. Hasegawa T, Suzuki H, Yamaura T, Muto S, Okabe N, Osugi J, Hoshino M, Higuchi M, Ise K, Gotoh M (2014) Prognostic value of peripheral and local forkhead box P3 regulatory T cells in patients with non-small-cell lung cancer. Mol Clin Oncol 2(5):685–694. doi:10.3892/mco.2014.299

    PubMed Central  PubMed  Google Scholar 

  8. Schuler PJ, Schilling B, Harasymczuk M, Hoffmann TK, Johnson J, Lang S, Whiteside TL (2012) Phenotypic and functional characteristics of CD4+CD39+FOXP3+and CD4+CD39+FOXP3neg T-cell subsets in cancer patients. Eur J Immunol 42(7):1876–1885. doi:10.1002/eji.201142347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Rolinski J, Radwan P, Fang J, Wang G, Zou W (2011) IL-17+regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol 186(7):4388–4395

    Article  CAS  PubMed  Google Scholar 

  10. Tsakiri N, Papadopoulos D, Denis MC, Mitsikostas DD, Kollias G (2012) TNFR2 on non-haematopoietic cells is required for Foxp3+Treg-cell function and disease suppression in EAE. Eur J Immunol 42(2):403–412. doi:10.1002/eji.201141659

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Subleski JJ, Kopf H, Howard OM, Mannel DN, Oppenheim JJ (2008) Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J Immunol 180(10):6467–6471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ryba M, Rybarczyk-Kapturska K, Zorena K, Myśliwiec M, Myśliwska J (2011) Lower frequency of CD62L(high) and higher frequency of TNFR2(+) Tregs are associated with inflammatory conditions in type 1 diabetic patients. Mediat Inflamm 2011:645643. doi:10.1155/2011/645643

    Article  Google Scholar 

  13. Minigo G, Woodberry T, Piera KA, Salwati E, Tjitra E, Kenangalem E, Price RN, Engwerda CR, Anstey NM, Plebanski M (2009) Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLoS Pathog 5(4):e1000402. doi:10.1371/journal.ppat.1000402

    Article  PubMed Central  PubMed  Google Scholar 

  14. Govindaraj C, Scalzo-Inguanti K, Madondo M, Hallo J, Flanagan K, Quinn M, Plebanski M (2013) Impaired Th1 immunity in ovarian cancer patients is mediated by TNFR2+Tregs within the tumor microenvironment. Clin Immunol 149(1):97–110. doi:10.1016/j.clim.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  15. Govindaraj C, Madondo M, Kong YY, Tan P, Wei A, Plebanski M (2014) Lenalidomide-based maintenance therapy reduces TNF receptor 2 on CD4 T cells and enhances immune effector function in acute myeloid leukemia patients. Am J Hematol 89(8):795–802. doi:10.1002/ajh.23746

    Article  CAS  PubMed  Google Scholar 

  16. Govindaraj C, Tan P, Walker P, Wei A, Spencer A, Plebanski M (2014) Reducing TNF receptor 2+regulatory T cells via the combined action of azacitidine and the HDAC inhibitor, panobinostat for clinical benefit in acute myeloid leukemia patients. Clin Cancer Res 20(3):724–735. doi:10.1158/1078-0432.ccr-13-1576

    Article  CAS  PubMed  Google Scholar 

  17. van der Most RG, Currie AJ, Mahendran S, Prosser A, Darabi A, Robinson BW, Nowak AK, Lake RA (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58(8):1219–1228. doi:10.1007/s00262-008-0628-9

    Article  PubMed  Google Scholar 

  18. Chen X, Subleski JJ, Hamano R, Howard OM, Wiltrout RH, Oppenheim JJ (2010) Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FOXP3+regulatory T cells in human peripheral blood. Eur J Immunol 40(4):1099–1106. doi:10.1002/eji.200940022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St Fazekas, Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells. J Exp Med 203(7):1701–1711. doi:10.1084/jem.20060772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yu N, Li X, Song W, Li D, Yu D, Zeng X, Li M, Leng X (2012) CD4(+)CD25(+)CD127 (low/-) T Cells: a more specific Treg population in human peripheral blood. Inflammation 35(6):1773–1780. doi:10.1007/s10753-012-9496-8

    Article  PubMed  Google Scholar 

  21. Kim EY, Priatel JJ, Teh SJ, Teh HS (2006) TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J Immunol 176(2):1026–1035

    Article  CAS  PubMed  Google Scholar 

  22. Kim EY, Teh HS (2004) Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. J Immunol 173(7):4500–4509

    Article  CAS  PubMed  Google Scholar 

  23. Soares A, Govender L, Hughes J, Mavakla W, de Kock M, Barnard C, Pienaar B, Janse van Rensburg E, Jacobs G, Khomba G, Stone L, Abel B, Scriba TJ, Hanekom WA (2010) Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods 362(1–2):43–50. doi:10.1016/j.jim.2010.08.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Chen X, Hamano R, Subleski JJ, Hurwitz AA, Howard OM, Oppenheim JJ (2010) Expression of costimulatory TNFR2 induces resistance of CD4+FoxP3 conventional T cells to suppression by CD4+FoxP3+regulatory T cells. J Immunol 185(1):174–182. doi:10.4049/jimmunol.0903548

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S (2000) Immunologic self-tolerance maintained by CD25(+) CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nechushtan H, Pham D, Zhang Y, Morgensztern D, Yi KH, Shin SU, Federoff HJ, Bowers WJ, Tolba KA, Rosenblatt JD (2008) Augmentation of anti-tumor responses of adoptively transferred CD8+T cells in the lymphopenic setting by HSV amplicon transduction. Cancer Immunol Immunother 57(5):663–675. doi:10.1007/s00262-007-0405-1

    Article  CAS  PubMed  Google Scholar 

  27. Blankenstein T, Qin Z (2003) The role of IFN-gamma in tumor transplantation immunity and inhibition of chemical carcinogenesis. Curr Opin Immunol 15(2):148–154

    Article  CAS  PubMed  Google Scholar 

  28. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111. doi:10.1038/35074122

    Article  CAS  PubMed  Google Scholar 

  29. Wang WJ, Tao Z, Gu W, Sun LH (2013) Variation of blood T lymphocyte subgroups in patients with non- small cell lung cancer. Asian Pac J Cancer Prev P 14(8):4671–4673

    Article  Google Scholar 

  30. De Vita F, Orditura M, Auriemma A, Infusino S, Catalano G (1998) Serum concentrations of proinflammatory cytokines in advanced non small cell lung cancer patients. J Exp Clin Cancer Res 17(4):413–417

    PubMed  Google Scholar 

  31. Ardizzoia A, Lissoni P, Brivio F, Tisi E, Perego MS, Grassi MG, Pittalis S, Crispino S, Barni S, Tancini G (1992) Tumor necrosis factor in solid tumors: increased blood levels in the metastatic disease. J Biol Regul Homeost Agents 6(3):103–107

    CAS  PubMed  Google Scholar 

  32. Hamano R, Huang J, Yoshimura T, Oppenheim JJ, Chen X (2011) TNF optimally activates regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4-1BB and OX40. Eur J Immunol 41(7):2010–2020. doi:10.1002/eji.201041205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100(14):8372–8377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cohen AD, Schaer DA, Liu C, Li Y, Hirschhorn-Cymmerman D, Kim SC, Diab A, Rizzuto G, Duan F, Perales MA, Merghoub T, Houghton AN, Wolchok JD (2010) Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS ONE 5(5):e10436. doi:10.1371/journal.pone.0010436

    Article  PubMed Central  PubMed  Google Scholar 

  35. Govindaraj C, Scalzo-Inguanti K, Scholzen A, Li S, Plebanski M (2013) TNFR2 Expression on CD25(hi)FOXP3(+) T Cells Induced upon TCR Stimulation of CD4 T Cells identifies maximal cytokine-producing effectors. Front Immunol 4:233. doi:10.3389/fimmu.2013.00233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rothe J, Gehr G, Loetscher H, Lesslauer W (1992) Tumor necrosis factor receptors–structure and function. Immunol Res 11(2):81–90

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Wu X, Zhou Q, Howard OM, Netea MG, Oppenheim JJ (2013) TNFR2 is critical for the stabilization of the CD4+Foxp3+regulatory T. cell phenotype in the inflammatory environment. J Immunol 190(3):1076–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Housley WJ, Adams CO, Nichols FC, Puddington L, Lingenheld EG, Zhu L, Rajan TV, Clark RB (2011) Natural but not inducible regulatory T cells require TNF-alpha signaling for in vivo function. J Immunol 186(12):6779–6787. doi:10.4049/jimmunol.1003868

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Willette-Brown J, Wu X, Hu Y, Howard OM, Oppenheim JJ (2015) IKKalpha is required for the homeostasis of regulatory T cells and for the expansion of both regulatory and effector CD4 T cells. Faseb J 29(2):443–454

    Article  CAS  PubMed  Google Scholar 

  40. Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J, Kneitz C, Wajant H (2010) Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 285(10):7394–7404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL (2004) Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem 279(31):32869–32881

    Article  CAS  PubMed  Google Scholar 

  42. Barbarulo A, Grazioli P, Campese AF, Bellavia D, Di Mario G, Pelullo M, Ciuffetta A, Colantoni S, Vacca A, Frati L, Gulino A, Felli MP, Screpanti I (2011) Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. J Immunol 186(11):6199–6206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Natural Science Foundation of China (No. 81171983 and No. 81401888) and Tianjin Natural Science Foundation (No. 12JCYBJC16100). We honestly thank Dr. Joost J. Oppenheim for his critical review and comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Chen or Hui Li.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Fan Yan and Ruijuan Du have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Du, R., Wei, F. et al. Expression of TNFR2 by regulatory T cells in peripheral blood is correlated with clinical pathology of lung cancer patients. Cancer Immunol Immunother 64, 1475–1485 (2015). https://doi.org/10.1007/s00262-015-1751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1751-z

Keywords

Navigation