Skip to main content

Advertisement

Log in

Myocardial tissue characterization by cardiovascular magnetic resonance T1 mapping and pericardial fat quantification in adolescents with morbid obesity. Cardiac dimorphism by gender

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Changes in the myocardial extracellular matrix (ECM) identified using T1 mapping cardiovascular magnetic resonance (CMR) have been only reported in obese adults, but with opposite conclusions. The objectives are to assess the composition of the myocardial ECM in an obese pediatric population without type 2 diabetes by quantifying native T1 time, and to quantify the pericardial fat index (PFI) and their relationship with cardiovascular risk factors.

Methods

Observational case-control research of 25 morbidly obese adolescents and 13 normal-weight adolescents. Native T1 and T2 times (ms), left ventricular (LV) geometry and function, PFI (g/ht3) and hepatic fat fraction (HFF, %) were calculated by 1.5-T CMR.

Results

No differences were noticed in native T1 between obese and non-obese adolescents (1000.0 vs. 990.5 ms, p0.73), despite showing higher LV mass values (28.3 vs. 22.9 g/ht3, p0.01). However, the T1 mapping values were significantly higher in females (1012.7 vs. 980.7 ms, p < 0.01) while in males, native T1 was better correlated with obesity parameters, particularly with triponderal mass index (TMI) (r = 0.51), and inflammatory cells. Similarly, the PFI was correlated with insulin resistance (r = 0.56), highly sensitive C-reactive protein (r = 0.54) and TMI (r = 0.77).

Conclusion

Female adolescents possess myocardium peculiarities associated with higher mapping values. In males, who are commonly more exposed to future non-communicable diseases, TMI may serve as a useful predictor of native T1 and pericardial fat increases. Furthermore, HFF and PFI appear to be markers of adipose tissue infiltration closely related with hypertension, insulin resistance and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart failure and transplantation committee; quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816

    Article  PubMed  Google Scholar 

  2. Weber KT, Jalil JE, Janicki JS, Pick R (1989) Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertens 2(12 Pt 1):931–940

    Article  CAS  PubMed  Google Scholar 

  3. Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging 9(1):67–81

    Article  PubMed  Google Scholar 

  4. Jellis CL, Kwon DH (2014) Myocardial T1 mapping: modalities and clinical applications. Cardiovasc Diagn Ther 4(2):126–137

    PubMed  PubMed Central  Google Scholar 

  5. Aherne E, Chow K, Carr J (2020) Cardiac T1 mapping: techniques and applications. J Magn Reson Imaging 51(5):1336–1356

    Article  PubMed  Google Scholar 

  6. van den Boomen M, Slart RHJA, Hulleman EV et al (2018) Native T1 reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk: a systematic review and meta-analysis. J Magn Reson Imaging 47(4):891–912

    Article  PubMed  Google Scholar 

  7. Puntmann VO, Carr-White G, Jabbour A et al (2016) International T1 Multicentre CMR Outcome Study. T1-Mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging 9(1):40–50

    Article  PubMed  Google Scholar 

  8. Rodrigues JC, Amadu AM, Ghosh Dastidar A et al (2017) ECG strain pattern in hypertension is associated with myocardial cellular expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging 18(4):441–450

    Article  PubMed  Google Scholar 

  9. Germain P, El Ghannudi S, Jeung MY et al (2014) Native T1 mapping of the heart - a pictorial review. Clin Med Insights Cardiol 8(Suppl 4):1–11

    PubMed  PubMed Central  Google Scholar 

  10. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542(7640): 177–185

  11. Khan JN, Wilmot EG, Leggate M et al (2014) Subclinical diastolic dysfunction in young adults with type 2 diabetes mellitus: a multiparametric contrast-enhanced cardiovascular magnetic resonance pilot study assessing potential mechanisms. Eur Heart J Cardiovasc Imaging 15(11):1263–1269

    Article  PubMed  Google Scholar 

  12. Homsi R, Yuecel S, Schlesinger-Irsch U et al (2019) Epicardial fat, left ventricular strain, and T1-relaxation times in obese individuals with a normal ejection fraction. Acta Radiol 60(10):1251–1257

    Article  PubMed  Google Scholar 

  13. Toemen L, Santos S, Roest AAW et al (2021) Pericardial adipose tissue, cardiac structures, and cardiovascular risk factors in school-age children. Eur Heart J Cardiovasc Imaging 22(3):307–313

    Article  PubMed  Google Scholar 

  14. Siurana JM, Ventura PS, Yeste D et al (2021) Myocardial geometry and dysfunction in morbidly obese adolescents (BMI 35–40 kg/m2). Am J Cardiol 157:128–134

    Article  PubMed  Google Scholar 

  15. Carrascosa A, Yeste D, Moreno-Galdo A et al (2018) Body mass index and tri-ponderal mass index of 1,453 healthy non-obese, non-undernourished millennial children. The Barcelona longitudinal growth study. An Pediatr (Bar) 89:137–143

    Article  Google Scholar 

  16. Lurbe E, Agabiti-Rosei E, Cruickshank JK et al (2016) European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887 – 920

  17. Mallol R, Amigo N, Rodrıguez MA et al (2015) Liposcale: a novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy. J Lipid Res 56:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gehan EA, George SL (1970) Estimation of human body surface area from height and weight. Cancer Chemother Rep 54(4):225–235

    CAS  PubMed  Google Scholar 

  19. Dabir D, Child N, Kalra A et al (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moon JC, Messroghli DR, Kellman P, Society for Cardiovascular Magnetic Resonance Imaging; Cardiovascular Magnetic Resonance Working Group of the European Society of Cardiology et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular magnetic resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wells JC, Cole TJ (2002) ALSPAC study steam. Adjustment of fat-free mass and fat mass for height in children aged 8 y. Int J Obes Relat Metab Disord 26(7):947–952

    Article  CAS  PubMed  Google Scholar 

  22. Wu H, Ballantyne CM (2020) Metabolic inflammation and insulin resistance in obesity. Circ Res 126(11):1549–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iozzo P (2011) Myocardial, perivascular, and epicardial fat. Diabetes Care 34(Suppl 2):S371–S379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baci D, Bosi A, Parisi L, Buono G, Mortara L, Ambrosio G, Bruno A (2020) Innate immunity effector cells as inflammatory drivers of Cardiac Fibrosis. Int J Mol Sci 21(19):7165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sado DM, White SK, Piechnik SK et al (2013) Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6(3):392–398

    Article  PubMed  Google Scholar 

  26. Olivotto I, Maron BJ, Tomberli B et al (2013) Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy. J Am Coll Cardiol 62(5):449–457

    Article  PubMed  Google Scholar 

  27. Parekh K, Markl M, Deng J, de Freitas RA, Rigsby CK (2017) T1 mapping in children and young adults with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 33(1):109–117

    Article  PubMed  Google Scholar 

  28. Cornicelli MD, Rigsby CK, Rychlik K, Pahl E, Robinson JD (2019) Diagnostic performance of cardiovascular magnetic resonance native T1 and T2 mapping in pediatric patients with acute myocarditis. J Cardiovasc Magn Reson 21(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  29. Levelt E, Mahmod M, Piechnik SK et al (2016) Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes 65(1):44–52

    Article  CAS  PubMed  Google Scholar 

  30. Sunthankar S, Parra DA, George-Durrett K et al (2019) Tissue characterisation and myocardial mechanics using cardiac MRI in children with hypertrophic cardiomyopathy. Cardiol Young 29(12):1459–1467

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415(6868): 240–3

  32. Yeste D, Clemente M, Campos A et al (2021) Diagnostic accuracy of the tri-ponderal mass index in identifying the unhealthy metabolic obese phenotype in obese patients. An Pediatr (Engl Ed) 94(2):68–74

    Article  PubMed  Google Scholar 

  33. López-Cuenca Á, Manzano-Fernández S, Lip GY et al (2013) Interleukin-6 and high-sensitivity C-reactive protein for the prediction of outcomes in non-ST-segment elevation acute coronary syndromes. Rev Esp Cardiol (Engl Ed) 66(3):185–192

    Article  PubMed  Google Scholar 

  34. Fox CS, Gona P, Hoffmann U, Porter SA et al (2009) Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation 119(12):1586–1591

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kleiner DE, Brunt EM, Van Natta M et al (2005) Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321

    Article  PubMed  Google Scholar 

  36. Ambale Venkatesh B, Volpe GJ, Donekal S et al (2014) Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the multi-ethnic study of atherosclerosis study. Hypertension 64(3):508–515

    Article  CAS  PubMed  Google Scholar 

  37. Gottbrecht M, Kramer CM, Salerno M (2019) Native T1 and extracellular volume measurements by Cardiac MRI in healthy adults: a Meta-analysis. Radiology 290(2):317–326

    Article  PubMed  Google Scholar 

  38. Rosmini S, Bulluck H, Captur G et al (2018) Myocardial native T1 and extracellular volume with healthy ageing and gender. Eur Heart J Cardiovasc Imaging 19(6):615–621

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tribuna L, Oliveira PB, Iruela A, Marques J, Santos P, Teixeira T (2021) Reference values of native T1 at 3T Cardiac magnetic resonance-standardization considerations between different vendors. Diagnostics (Basel) 11(12):2334

    Article  CAS  PubMed  Google Scholar 

  40. Piechnik SK, Ferreira VM, Lewandowski AJ et al (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 15(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wells JC (2007) Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab 21(3): 415–30

Download references

Acknowledgements

The statistical analysis was carried out in the Statistics and Bioinformatics Unit (UEB) of the Vall d’Hebron Hospital Research Institute (VHIR). The project was funded by the Spanish Society of Paediatric Cardiology and Congenital Heart Disease.

Author information

Authors and Affiliations

Authors

Contributions

Each author has contributed differently to the manuscript. Dr. Siurana, Dr. Sabaté-Rotés, Dr. Riaza, Dr. Yeste and Dr. Ventura designed the study, conducted the bibliographic search and wrote different parts of the manuscript. Dr. Riera and Dr. Vázquez contributed to gathering patient MRI data and to the discussion of the study results. Dr. Ferrer-Costa, Dr. Giralt, Dr. Gran and Dr. Rosés-Noguer participated in the laboratory and cardiac results evaluation and analysis. Dr. Siurana and Dr. Sabaté-Rotés coordinated all authors’ participation. All authors have critically reviewed and approved the manuscript.

Corresponding author

Correspondence to Jose M. Siurana.

Ethics declarations

Funding

J.M.S. received the 2019 Juan V. Comas grant for this project from the Spanish Society of Paediatric Cardiology and Congenital Heart Disease.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Institutional Review Board at Vall d’Hebron Hospital approved the protocol (PR-AMI-273/2018).

Written informed consent for participation was obtained. All subjects provided assent and an informed consent was signed by their parents/legal guardians.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siurana, J.M., Riaza, L., Ventura, P.S. et al. Myocardial tissue characterization by cardiovascular magnetic resonance T1 mapping and pericardial fat quantification in adolescents with morbid obesity. Cardiac dimorphism by gender. Int J Cardiovasc Imaging 39, 781–792 (2023). https://doi.org/10.1007/s10554-022-02773-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02773-y

Keywords

Navigation