Skip to main content
Log in

The prognostic value of speckle tracking echocardiography in patients with end stage renal disease on dialysis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Background

Chronic kidney disease (CKD) is associated with a higher incidence of cardiovascular death especially as the disease progresses and patients are on long-term dialysis treatment. Left ventricular (LV) dysfunction and cardiac deformation measured by speckle tracking echocardiography seem to play an important prognostic role in several different specific populations.

Objective

Τhe prognostic value of strain analysis measurements, including the novel diastolic parameters such as left atrial (LA) strain, in patients with end-stage renal disease on dialysis (stage 5 CKD).

Methods

67 patients (mean age 62.3 ± 11.8, 65.7% men) with stage 5 CKD (45 on hemodialysis and 22 on peritoneal dialysis) were enrolled in the study protocol. The mean duration of dialysis was 102.48 ± 84.98 months. Mean follow-up lasted seven years.

Results

Most of the study population had normal or mildly impaired systolic function with a mean LV ejection fraction of 49.17% (± 10.41) while 70% of patients had impaired LV global longitudinal strain, mean 14.35% (± 4.49). Regarding LA strain parameters the mean LA reservoir, LA conduit, and LA contractile reserve were 24.11% (± 12.61), 10.56% (± 5.88), and 13.60% (± 9.15) respectively. Thus 50% of the population had impaired LA strain. Logistic regression analysis showed that of the various echocardiographic parameters LV ejection fraction, LV global longitudinal strain, and the conduit phase of LA strain were significantly associated with total prognosis (p = 0.009, p = 0.007, p = 0.05). The conduit element of LA strain was the strongest predictor among them, when adjusted for age (OR = 0.77 p = 0.04).

Conclusions

Left ventricular diastolic dysfunction is an important prognostic factor in patients with advanced CKD on long-term dialysis, without known CAD. The novel echocardiographic parameters such as LA strain could add valuable information to the overall cardiac evaluation of this specific population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wen CP, Cheng TY, Tsai MK et al (2008) All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371:2173–2182. https://doi.org/10.1016/S0140-6736(08)60952-6

    Article  PubMed  Google Scholar 

  2. Levey AS, Beto JA, Coronado BE et al (1998) Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am J Kidney Dis 32:853–906. https://doi.org/10.1016/s0272-6386(98)70145-3

    Article  CAS  PubMed  Google Scholar 

  3. Edwards NC, Moody WE, Chue CD et al (2014) Defining the natural history of uremic cardiomyopathy in chronic kidney disease: the role of cardiovascular magnetic resonance. JACC Cardiovasc Imaging 7:703–714. https://doi.org/10.1016/j.jcmg.2013.09.025

    Article  PubMed  Google Scholar 

  4. Meeus F, Kourilsky O, Guerin AP et al (2000) Pathophysiology of cardiovascular disease in hemodialysis patients. Kidney Int Suppl 76:S140–147. https://doi.org/10.1046/j.1523-1755.2000.07618.x

    Article  CAS  PubMed  Google Scholar 

  5. Best PJ, Reddan DN, Berger PB et al (2004) Cardiovascular disease and chronic kidney disease: insights and an update. Am Heart J 148:230–242. https://doi.org/10.1016/j.ahj.2004.04.011

    Article  PubMed  Google Scholar 

  6. Parfrey PS, Foley RN (1999) The clinical epidemiology of cardiac disease in chronicrenal failure. J Am Soc Nephrol 10:1606–1615. https://doi.org/10.1681/asn.v1071606

    Article  CAS  PubMed  Google Scholar 

  7. Clyne N, Lins LE, Pehrsson SK (1986) Occurrence and significance of heart disease in uraemia: an autopsy study. Scand J Urol Nephrol 20:307–311. https://doi.org/10.3109/00365598609024517

    Article  CAS  PubMed  Google Scholar 

  8. Ikram H, Lynn KL, Bailey RR et al (1983) Cardiovascular changes in chronic hemodialysis patients. Kidney Int 24:371–376. https://doi.org/10.1038/ki.1983.169

    Article  CAS  PubMed  Google Scholar 

  9. Unger ED, Dubin RF, Deo R et al (2016) Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 18:103–112. https://doi.org/10.1002/ejhf.445

    Article  PubMed  Google Scholar 

  10. Ter Maaten JM, Damman K, Verhaar MC et al (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18:588–598. https://doi.org/10.1002/ejhf.497

    Article  PubMed  Google Scholar 

  11. Stack AG, Saran R (2002) Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am J Kidney Dis 40:1202–1210. https://doi.org/10.1053/ajkd.2002.36881

    Article  PubMed  Google Scholar 

  12. Sharma R, Gaze DC, Pellerin D et al (2006) Cardiac structural and functional abnormalities in end stage renal disease patients with elevated cardiac troponin T. Heart 92:804–809. https://doi.org/10.1136/hrt.2005.069666

    Article  CAS  PubMed  Google Scholar 

  13. Chen SC, Chang JM, Liu WC et al (2012) Echocardiographic parameters are independently associated with increased cardiovascular events in patients with chronic kidney disease. Nephrol Dial Transplant 27:1064–1070. https://doi.org/10.1093/ndt/gfr407

    Article  CAS  PubMed  Google Scholar 

  14. Farshid A, Pathak R, Shadbolt B et al (2013) Diastolic function is a strong predictor of mortality in patients with chronic kidney disease. BMC Nephrol 14:280. https://doi.org/10.1186/1471-2369-14-280

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tops LF, Delgado V, Marsan NA et al (2017) Myocardial strain to detect subtle left ventricular systolic dysfunction. Eur J Heart Fail 19:307–313. https://doi.org/10.1002/ejhf.694

    Article  PubMed  Google Scholar 

  16. Singh A, Addetia K, Maffessanti F et al (2017) LA strain categorization of LV diastolic dysfunction. J Am Coll Cardiovasc Imaging 10:735–743. https://doi.org/10.1016/j.jcmg.2016.08.014

    Article  Google Scholar 

  17. Liu YW, Su CT, Sung JM et al (2013) Association of left ventricular longitudinal strain with mortality among stable hemodialysis patients with preserved left ventricular ejection fraction. Clin J Am Soc Nephrol 2013; 8:1564–1574. https://doi.org/10.2215/cjn.10671012

  18. Kramann R, Erpenbeck J, Schneider RK et al (2014) Speckle tracking echocardiography detects uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. J Am Soc Nephrol 25:2351–2365. https://doi.org/10.1681/asn.2013070734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Russo C, Jin Z, Elkind MS et al (2014) Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort. Eur J Heart Fail 16:1301–1309. https://doi.org/10.1002/ejhf.154

    Article  PubMed  Google Scholar 

  20. Gan GCH, Kadappu K, Bhat A et al (2020) Left Atrial Strain Is the Best Predictor of Adverse Cardiovascular Outcomes in Patients with Chronic Kidney Disease. J Am Soc Echocardiogr 34:166–175. https://doi.org/10.1016/j.echo.2020.09.015

    Article  PubMed  Google Scholar 

  21. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  22. Brecht A, Oertelt-Prigione S, Seeland U et al (2016) Left atrial function in preclinical diastolic dysfunction: two-dimensional speckle-tracking echocardiography-derived results from the BEFRI trial. J Am Soc Echocardiogr 29:750–758. https://doi.org/10.1016/j.echo.2016.03.013

    Article  PubMed  Google Scholar 

  23. Khan UA, de Simone G, Hill J et al (2013) Depressed atrial function in diastolic dysfunction: a speckle tracking imaging study. Echocardiography 30:309–316. https://doi.org/10.1111/echo.12043

    Article  PubMed  Google Scholar 

  24. Matsuda Y, Toma Y, Ogawa H et al (1983) Importance of left atrial function in patients with myocardial infarction. Circulation 67:566–571. https://doi.org/10.1161/01.CIR.67.3.566

    Article  CAS  PubMed  Google Scholar 

  25. Mondillo S, Cameli M, Caputo ML et al (2011) Early detection of left atrial strain abnormalities by speckle-tracking in patients with chronic kidney disease and normal left atrial size. J Am Soc Echocardiogr 24:898–908. https://doi.org/10.1016/j.echo.2011.04.014

    Article  PubMed  Google Scholar 

  26. Huntjens PR, Zhang KW, Soyama Y et al (2021) Prognostic utility of echocardiographic atrial and ventricular strain imaging in patients with cardiac amyloidosis. JACC Cardiovasc Imaging 14:1508–1519. https://doi.org/10.1016/j.jcmg.2021.01.016

    Article  PubMed  Google Scholar 

  27. von Köckritz F, Braun A, Schmuck RB et al (2021) Speckle tracking analysis reveals altered left atrial and ventricular myocardial deformation in patients with end-stage liver disease. J Clin Med 10:897. https://doi.org/10.3390/jcm10050897

    Article  CAS  Google Scholar 

  28. Mitchell C, Rahko PS, Blauwet LA et al (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 32:1–64. https://doi.org/10.1016/j.echo.2018.06.004

    Article  PubMed  Google Scholar 

  29. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  Google Scholar 

  30. Badano LP, Kolias TJ, Muraru D et al (2018) Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 19:591–600. https://doi.org/10.1093/ehjci/jey042

    Article  PubMed  Google Scholar 

  31. Sugimoto T, Dulgheru R, Bernard A et al (2017) Echocardiographic reference ranges for normal left ventricular 2d strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18:833–840. https://doi.org/10.1093/ehjci/jex140

    Article  PubMed  Google Scholar 

  32. Morris DA, Takeuchi M, Krisper M et al (2015) Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography: multicenter study. Eur Heart J Cardiovasc Imaging 16:364–372. https://doi.org/10.1093/ehjci/jeu219

    Article  PubMed  Google Scholar 

  33. Pathan F, D’Elia N, Nolan MT et al (2017) Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr 30:59–70 e58. https://doi.org/10.1016/j.echo.2016.09.007

    Article  PubMed  Google Scholar 

  34. Yamada S, Ishii H, Takahashi H et al (2010) Prognostic value of reduced left ventricular ejection fraction at start of hemodialysis therapy on cardiovascular and all-cause mortality in end-stage renal disease patients. Clin J Am Soc Nephrol 5:1793–1798. https://doi.org/10.2215/cjn.00050110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Payne J, Sharma S, De Leon D et al (2012) Association of echocardiographic abnormalities with mortality in men with non-dialysis-dependent chronic kidney disease. Nephrol Dial Transplant 27:694–700. https://doi.org/10.1093/ndt/gfr282

    Article  PubMed  Google Scholar 

  36. Cho GY, Marwick TH, Kim HS et al (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54:618–624. https://doi.org/10.1016/j.jacc.2009.04.061

    Article  PubMed  Google Scholar 

  37. Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2:356–364. https://doi.org/10.1161/circimaging.109.862334

    Article  PubMed  Google Scholar 

  38. Hayashi SY, Rohani M, Lindholm B et al (2006) Left ventricular function in patients with chronic kidney disease evaluated by colour tissue doppler velocity imaging. Nephrol Dial Transplant 21:125–132. https://doi.org/10.1093/ndt/gfi075

    Article  PubMed  Google Scholar 

  39. Morris DA, Belyavskiy E, Aravind-Kumar R et al (2018) Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging 11:1405–1415. https://doi.org/10.1016/j.jcmg.2017.07.029

    Article  PubMed  Google Scholar 

  40. Liu YW, Tseng CC, Su CT et al (2014) The prognostic value of left ventricular global peak systolic longitudinal strain in chronic peritoneal dialysis patients. Intern J Cardiol Heart Vasc 5:1–8. https://doi.org/10.1016/j.ijcha.2014.10.016

    Google Scholar 

  41. Ersboll M, Valeur N, Mogensen UM et al (2013) Prediction of all cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol 61:2365–2373. https://doi.org/10.1016/j.jacc.2013.02.061

    Article  PubMed  Google Scholar 

  42. Kadappu KK, Kuncoro AS, Hee L et al (2014) Chronic kidney disease is independently associated with alterations in left atrial function. Echocardiography 31:956–964. https://doi.org/10.1111/echo.12503

    Article  PubMed  Google Scholar 

  43. Gan GCH, Bhat A, Chen HHL et al (2021) Left atrial reservoir strain by speckle tracking echocardiography: association with exercise capacity in chronic kidney disease. J Am Heart Assoc 10:e017840. https://doi.org/10.1161/jaha.120.017840

    Article  PubMed  Google Scholar 

  44. Li C, Zhang J, Fan R et al (2019) Left atrial strain associated with alterations in cardiac diastolic function in patients with end-stage renal disease. Int J Cardiovasc Imaging 35:1803–1810. https://doi.org/10.1007/s10554-019-01622-9

    Article  PubMed  Google Scholar 

  45. Inoue K, Khan FH, Remme EW et al (2014) Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur Heart J Cardiovasc Imaging 15:103. https://doi.org/10.1093/ehjci/jeaa415

    PubMed  Google Scholar 

  46. Telles F, Nanayakkara S, Evans S et al (2019) Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction. Eur J Heart Fail 21:495–505. https://doi.org/10.1002/ejhf.1399

    Article  CAS  PubMed  Google Scholar 

  47. Liao JN, Chao TF, Kuo JY et al (2020) Global left atrial longitudinal strain using 3-beat method improves risk prediction of stroke over conventional echocardiography in atrial fibrillation. Circ Cardiovasc Imaging 13:e010287. https://doi.org/10.1161/circimaging.119.010287

    Article  PubMed  Google Scholar 

  48. Sun JP, Yang Y, Guo R et al (2013) Left atrial regional phasic strain, strain rate and velocity by speckle-tracking echocardiography: normal values and effects of aging in a large group of normal subjects. Int J Cardiol 168:3473–3479. https://doi.org/10.1016/j.ijcard.2013.04.167

    Article  PubMed  Google Scholar 

  49. Gan GCH, Kadappu KK, Bhat A et al (2021) Left atrial strain is the best predictor of adverse cardiovascular outcomes in patients with chronic kidney disease. J Am Soc Echocardiogr 34:166–175. doi: 10.1016/j.echo.2020.09.015

    Article  PubMed  Google Scholar 

  50. Marino PN, Zanaboni J, Degiovanni A et al (2021) Left atrial conduit flow rate at baseline and during exercise: an index of impaired relaxation in hfpef patients. ESC Heart Fail 8:4334–4342. doi: https://doi.org/10.1002/ehf2.13544

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zanaboni J, Panizza A, Marino PN (2021) left atrial conduit function modulates right ventricular afterload, exercise capacity and survival in heart failure patients. Cardiovasc Med (Hagerstown) 22:396–404. doi: https://doi.org/10.2459/JCM.0000000000001171

    Article  CAS  Google Scholar 

  52. Savelev A, Solovev OV, Baturova MA et al (2021) Reduction of left atrial strain and strain rate during conduit phase as the earliest marker of left ventricular diastolic disfunction. Eur Heart J Cardiovasc Imaging 22:s1. https://doi.org/10.1093/ehjci/jeaa356.025

    Article  Google Scholar 

  53. Romano G, Raffa G, Bellavia D et al (2018) Left atrial longitudinal strain at the conduit phase. a new additional parameter in predicting elevated capillary wedge pressure in patients candidate for heart transplant. Transplantation 102:s119. https://doi.org/10.1097/01.tp.0000542725.19394.15

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CA, VK and DT designed the study. VK and DT performed the offline echocardiographic measurements and DT analyzed the data. VK, DT and CA drafted the manuscript. All authors interpreted the results, revised critically the original draft andd accepted the final version of the submitted manuscript.

Corresponding author

Correspondence to Dimitrios Tsartsalis MD, PhD, FESC.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Conflict of interest

The authors have no financial or non-financial interests to disclose.

Ethics approval

The study was approved by the institutional review board of Hippokration General Hospital.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors confirm that patients provided informed consent for publication of the images in Figs. 1 and 2.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Vicky Kakiouzi and Dimitrios Tsartsalis made equal contributions to this manuscript and are jointly first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakiouzi, V., Tsartsalis, D., Aggeli, C. et al. The prognostic value of speckle tracking echocardiography in patients with end stage renal disease on dialysis. Int J Cardiovasc Imaging 38, 2605–2614 (2022). https://doi.org/10.1007/s10554-022-02608-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02608-w

Keywords

Navigation