Skip to main content
Log in

Apical variant hypertrophic cardiomyopathy “multimodality imaging evaluation”

  • Review Article
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Apical variant hypertrophic cardiomyopathy (AHCM) is characterized by asymmetric hypertrophy of the left ventricular (LV) apex. T wave inversions of variable degree, particularly in the left precordial leads, and left ventricular hypertrophy (LVH) are common EKG findings in AHCM. Echocardiography is typically the initial imaging modality used in the diagnosis and evaluation of AHCM. The diagnosis is made when the LV apex has apical wall thickness of ≥ 15 mm or a ratio of apical to basal LV wall thickness of ≥ 1.3 at end-diastole. The use of microbubble contrast agents with echocardiography is helpful for visualization of the apex. Cardiac magnetic resonance (CMR) has the advantage of a large field of view and the ability to perform tissue characterization. Late gadolinium enhancement (LGE) sequences are essential in the assessment of potential areas of myocardial scarring. Cardiac computed tomography (CCT) has the advantage of being able to evaluate coronary arteries in addition to assessing cardiac anatomy and function. A “Solar Polar” map pattern is the characteristic feature of AHCM on myocardial perfusion imaging (MPI) in cases not associated with apical aneurysm (APA). Recognition of typical perfusion patterns in AHCM patients is not only important in the diagnostic evaluation of this disease process, but also for avoiding unnecessary and costly tests. The purpose of this article is to review the imaging features of AHCM from different imaging modalities and assess the value added of each modality in the diagnosis of AHCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eriksson MJ et al (2002) Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol 39(4):638–645

    Article  PubMed  Google Scholar 

  2. Ho HH et al (2004) Clinical characteristics of and long-term outcome in Chinese patients with hypertrophic cardiomyopathy. Am J Med 116(1):19–23

    Article  PubMed  Google Scholar 

  3. Kitaoka H et al (2003) Comparison of prevalence of apical hypertrophic cardiomyopathy in Japan and the United States. Am J Cardiol 92(10):1183–1186

    Article  PubMed  Google Scholar 

  4. Moon JC et al (2004) Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart 90(6):645–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jan MF et al (2016) Apical hypertrophic cardiomyopathy: present status. Int J Cardiol 222:745–759

    Article  PubMed  Google Scholar 

  6. Cerqueira MD et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  7. Kim EK et al (2016) Differences in apical and non-apical types of hypertrophic cardiomyopathy: a prospective analysis of clinical, echocardiographic, and cardiac magnetic resonance findings and outcome from 350 patients. Eur Heart J Cardiovasc Imaging 17(6):678–686

    Article  PubMed  Google Scholar 

  8. Gersh BJ et al (2011) ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2011. 58(25):e212–e260

    Article  CAS  PubMed  Google Scholar 

  9. Choi EY et al (2008) Phenotypic spectrum and clinical characteristics of apical hypertrophic cardiomyopathy: multicenter echo-Doppler study. Cardiology 110(1):53–61

    Article  PubMed  Google Scholar 

  10. Di Tullio MR et al (1999) Left atrial size and the risk of ischemic stroke in an ethnically mixed population. Stroke 30(10):2019–2024

    Article  PubMed  Google Scholar 

  11. Takemoto Y et al (2005) Usefulness of left atrial volume in predicting first congestive heart failure in patients > or = 65 years of age with well-preserved left ventricular systolic function. Am J Cardiol 96(6):832–836

    Article  PubMed  Google Scholar 

  12. Lang RM et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1-39.e14

    Article  PubMed  Google Scholar 

  13. Yang H et al (2005) Enlarged left atrial volume in hypertrophic cardiomyopathy: a marker for disease severity. J Am Soc Echocardiogr 18(10):1074–1082

    Article  PubMed  Google Scholar 

  14. Spirito P et al (2000) Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 342(24):1778–1785

    Article  CAS  PubMed  Google Scholar 

  15. Biswas M et al (2013) Two- and three-dimensional speckle tracking echocardiography: clinical applications and future directions. Echocardiography 30(1):88–105

    Article  PubMed  Google Scholar 

  16. Chang SA et al (2010) Left ventricular twist mechanics in patients with apical hypertrophic cardiomyopathy: assessment with 2D speckle tracking echocardiography. Heart 96(1):49–55

    Article  PubMed  Google Scholar 

  17. Saccheri MC et al (2017) Speckle tracking echocardiography to assess regional ventricular function in patients with apical hypertrophic cardiomyopathy. World J Cardiol 9(4):363–370

    Article  PubMed  PubMed Central  Google Scholar 

  18. Binder J et al (2011) Apical hypertrophic cardiomyopathy: prevalence and correlates of apical outpouching. J Am Soc Echocardiogr 24(7):775–781

    Article  PubMed  Google Scholar 

  19. Rowin EJ et al (2017) Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management. J Am Coll Cardiol 69(7):761–773

    Article  PubMed  Google Scholar 

  20. Matsubara K et al (2003) Sustained cavity obliteration and apical aneurysm formation in apical hypertrophic cardiomyopathy. J Am Coll Cardiol 42(2):288–295

    Article  PubMed  Google Scholar 

  21. Kim H et al (2016) Significance of apical cavity obliteration in apical hypertrophic cardiomyopathy. Heart 102(15):1215–1220

    Article  PubMed  Google Scholar 

  22. Minami Y, Haruki S, Hagiwara N (2014) Phenotypic overlap in hypertrophic cardiomyopathy: apical hypertrophy, midventricular obstruction, and apical aneurysm. J Cardiol 64(6):463–469

    Article  PubMed  Google Scholar 

  23. Maron MS et al (2008) Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation 118(15):1541–1549

    Article  PubMed  Google Scholar 

  24. Nagueh SF et al (2011) American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy: endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 24(5):473–498

    Article  PubMed  Google Scholar 

  25. Parato VM et al (2016) Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy. Cardiovasc Ultrasound 14(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  26. Geske JB et al (2007) Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 116(23):2702–2708

    Article  PubMed  Google Scholar 

  27. Nishimura RA et al (1996) Noninvasive doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol 28(5):1226–1233

    Article  CAS  PubMed  Google Scholar 

  28. Kitaoka H et al (2013) Tissue Doppler imaging and prognosis in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 14(6):544–549

    Article  PubMed  Google Scholar 

  29. Kitaoka H et al (2011) Tissue doppler imaging and plasma BNP levels to assess the prognosis in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 24(9):1020–1025

    Article  PubMed  Google Scholar 

  30. Nagueh SF et al (1999) Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 99(2):254–261

    Article  CAS  PubMed  Google Scholar 

  31. Nagueh SF et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29(4):277–314

    Article  PubMed  Google Scholar 

  32. Nakamura T et al (1992) Diastolic paradoxic jet flow in patients with hypertrophic cardiomyopathy: evidence of concealed apical asynergy with cavity obliteration. J Am Coll Cardiol 19(3):516–524

    Article  CAS  PubMed  Google Scholar 

  33. Mulvagh SL et al (2008) American Society of Echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr 21(11):1179–201 (quiz 1281)

    Article  PubMed  Google Scholar 

  34. Minami Y et al (2011) Clinical implications of midventricular obstruction in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 57(23):2346–2355

    Article  PubMed  Google Scholar 

  35. Prasad K et al (1999) Echocardiographic pitfalls in the diagnosis of hypertrophic cardiomyopathy. Heart 82:Iii8–Iii15

    Article  PubMed  PubMed Central  Google Scholar 

  36. Amano Y et al (2018) Cardiac MR imaging of hypertrophic cardiomyopathy: techniques, findings, and clinical relevance. Magn Reson Med Sci 17(2):120–131

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parisi R et al (2014) Multimodality imaging in apical hypertrophic cardiomyopathy. World J Cardiol 6(9):916–923

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baxi AJ et al (2016) Hypertrophic cardiomyopathy from A to Z: genetics, pathophysiology, imaging, and management. Radiographics 36(2):335–354

    Article  PubMed  Google Scholar 

  39. Yamada M et al (2009) Frequency and distribution of late gadolinium enhancement in magnetic resonance imaging of patients with apical hypertrophic cardiomyopathy and patients with asymmetrical hypertrophic cardiomyopathy: a comparative study. Int J Cardiovasc Imaging 25(Suppl 1):131–138

    Article  PubMed  Google Scholar 

  40. Olivotto I et al (2012) Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail 5(4):535–546

    Article  PubMed  Google Scholar 

  41. Morishita S et al (2001) Impaired retention of technetium-99m tetrofosmin in hypertrophic cardiomyopathy. Am J Cardiol 87(6):743–747

    Article  CAS  PubMed  Google Scholar 

  42. Ward RP et al (2003) Resting "Solar Polar" map pattern and reduced apical flow reserve: characteristics of apical hypertrophic cardiomyopathy on SPECT myocardial perfusion imaging. J Nucl Cardiol 10(5):506–512

    Article  PubMed  Google Scholar 

  43. Cianciulli TF et al (2009) Myocardial perfusion SPECT in the diagnosis of apical hypertrophic cardiomyopathy. J Nucl Cardiol 16(3):391–395

    Article  PubMed  Google Scholar 

  44. Zhou Y et al (2019) Development and validation of a new method to diagnose apical hypertrophic cardiomyopathy by gated single-photon emission computed tomography myocardial perfusion imaging. Nucl Med Commun 40(3):206–211

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto H et al (2017) Occasionally increased (18)F-fluorodeoxyglucose uptake in apical hypertrophic cardiomyopathy with mid-ventricular obstruction. J Cardiol Cases 16(2):44–47

    Article  PubMed  PubMed Central  Google Scholar 

  46. Norikane T et al (2019) Occasionally increased (18)F-FDG uptake in apical hypertrophic cardiomyopathy on serial follow-up PET/CT. J Nucl Cardiol. https://doi.org/10.1007/s12350-019-01623-0

    Article  PubMed  Google Scholar 

  47. Takeishi Y et al (2017) Cardiac imaging with (18)F-fluorodeoxyglucose PET/MRI in hypertrophic cardiomyopathy. J Nucl Cardiol 24(5):1827–1828

    Article  PubMed  Google Scholar 

  48. Akbulut A et al (2019) The detection of apical variant of hypertrophic cardiomyopathy in myocardial perfusion imaging. Acta Cardiol 74:1–3

    Google Scholar 

  49. Zein RK et al (2017) An uncommon variant of an uncommon disease: a Caucasian adolescent with apical hypertrophic cardiomyopathy diagnosed with myocardial perfusion imaging. World J Nucl Med 16(3):251–254

    Article  PubMed  PubMed Central  Google Scholar 

  50. Masrur S et al (2016) SPECT myocardial perfusion imaging in the diagnosis of apical hypertrophic cardiomyopathy. Tex Heart Inst J 43(5):467–468

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jouni H, Geske JB, Miller TD (2013) The diagnosis of apical hypertrophic cardiomyopathy with myocardial perfusion imaging. Heart 99(14):1064–1065

    Article  PubMed  Google Scholar 

  52. Hsieh BP, Travin MI (2012) Myocardial perfusion image findings in apical hypertrophic cardiomyopathy. J Nucl Cardiol 19(1):172–176

    Article  PubMed  Google Scholar 

  53. Russo RR et al (2010) Severe ischaemia on SPECT myocardial perfusion imaging secondary to microvascular dysfunction and apical hypertrophic cardiomyopathy. Clin Nucl Med 35(12):937–940

    Article  PubMed  Google Scholar 

  54. Irwin RB, Arumugam P, Khattar RS (2010) Incidental detection of apical hypertrophic cardiomyopathy by myocardial perfusion imaging. Nucl Med Commun 31(4):286–293

    Article  PubMed  Google Scholar 

  55. Minamimoto R et al (2013) Incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening. Ann Nucl Med 27(6):572–580

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaimaa A. Fadl.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests or financial relations to disclose. The manuscript does not contain clinical studies or patient’s data. The authors comply with international, national and institutional ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Fadl, S.A., Sukhotski, S. et al. Apical variant hypertrophic cardiomyopathy “multimodality imaging evaluation”. Int J Cardiovasc Imaging 36, 553–561 (2020). https://doi.org/10.1007/s10554-019-01739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01739-x

Keywords

Navigation