Skip to main content

Advertisement

Log in

Incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening

  • Short Communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 29 June 2013

Abstract

Objectives

Cardiac FDG uptake is known to show a variety of patterns under clinical fasting conditions. We hypothesized that focal FDG uptake in the heart (FUH) represents a sign of cardiac disease risk, especially in coronary artery disease (CAD).The aim of this study was to clarify the relationship between FUH and cardiac disease.

Methods

Cases showing FUH were selected based on comments in diagnostic reports or identification on retrospective review. Quantitative analysis was performed using maximum standardized uptake value (SUVmax), with regions of interest drawn over focal uptake areas in the heart as confirmed by PET/CT and in lateral side of the same slice showing focal FDG uptake.

Results

For the 20 patients (11 men, 9 women) with confirmed FUH, coronary artery stenosis or history of treatment for coronary disease was present in 11 patients (55.0 %), and 2 patients showed apical hypertrophy. Mean SUVmax of FUH did not differ significantly between patients with confirmed cardiac disease and those with no evidence of cardiac disease (P = 0.78).

Conclusions

FUH suggests a high likelihood of CAD in patients without myocardial symptoms. Cardiac screening or a check of the history of cardiac disease is thus worth considering when FUH is seen incidentally on FDG-PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Schelbert HR. Metabolic imaging to assess myocardial viability. J Nucl Med. 1994;35(4 Suppl):8S–14S.

    PubMed  CAS  Google Scholar 

  2. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994;73:527–33.

    Article  PubMed  Google Scholar 

  3. Bacharach SL, Bax JJ, Case J, Delbeke D, Kurdziel KA, Martin WH, et al. PET myocardial glucose metabolism and perfusion imaging: Part 1—guidelines for data acquisition and patient preparation. J Nucl Cardiol. 2003;10:543–56.

    Article  PubMed  Google Scholar 

  4. Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35:933–41.

    Article  PubMed  Google Scholar 

  5. Minamimoto R, Morooka M, Kubota K, Ito K, Masuda-Miyata Y, Mitsumoto T, et al. Value of FDG-PET/CT using unfractionated heparin for managing primary cardiac lymphoma and several key findings. J Nucl Cardiol. 2011;18:516–20.

    Article  PubMed  Google Scholar 

  6. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  7. de Groot M, Meeuwis AP, Kok PJ, Corstens FH, Oyen WJ. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut. Eur J Nucl Med Mol Imaging. 2005;32:98–101.

    Article  PubMed  Google Scholar 

  8. Curigliano G, Mayer EL, Burstein HJ, Winer EP, Goldhirsch A. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis. 2010;53:94–104.

    Article  PubMed  CAS  Google Scholar 

  9. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  PubMed  CAS  Google Scholar 

  10. Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, et al. Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med. 1977;297:845–50.

    Article  PubMed  CAS  Google Scholar 

  11. Mangano DT, Goldman L. Preoperative assessment of patients with known or suspected coronary disease. N Engl J Med. 1995;333:1750–6.

    Article  PubMed  CAS  Google Scholar 

  12. Fujii H, Ide M, Yasuda S, Takahashi W, Shohtsu A, Kubo A. Increased FDG uptake in the wall of the right atrium in people who participated in a cancer screening program with whole-body PET. Ann Nucl Med. 1999;13:55–9.

    Article  PubMed  Google Scholar 

  13. Zanco P, Desideri A, Mobilia G, Cargnel S, Milan E, Celegon L, et al. Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med. 2000;41:973–7.

    PubMed  CAS  Google Scholar 

  14. Kluge R, Barthel H, Pankau H, Seese A, Schauer J, Wirtz H, et al. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension. J Nucl Med. 2005;46:25–31.

    PubMed  CAS  Google Scholar 

  15. Ishida Y, Nagata S, Uehara T, Yasumura Y, Fukuchi K, Miyatake K. Clinical analysis of myocardial perfusion and metabolism in patients with hypertrophic cardiomyopathy by single photon emission tomography and positron emission tomography. J Cardiol. 2001;37:121–8.

    PubMed  Google Scholar 

  16. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32:217–38.

    Article  PubMed  CAS  Google Scholar 

  17. Lopaschuk GD, Stanley WC. Glucose metabolism in the ischemic heart. Circulation. 1997;95:313–5.

    Article  PubMed  CAS  Google Scholar 

  18. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, et al. ASNC imaging guidelines for nuclear cardiology procedures. PET myocardial perfusion and metabolism clinical imaging. http://www.asnc.org/imageuploads/ImagingGuidelinesPETJuly2009.pdf.

  19. Tamaki N, Kawamoto M, Takahashi N, Yonekura Y, Magata Y, Nohara R, et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol. 1993;22:1621–7.

    Article  PubMed  CAS  Google Scholar 

  20. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  21. Dilsizian V. 18F-FDG uptake as a surrogate marker for antecedent ischemia. J Nucl Med. 2008;49:1909–11.

    Article  PubMed  Google Scholar 

  22. Nakata T, Hashimoto A, Kobayashi H, Miyamoto K, Tsuchihashi K, Miura T, et al. Outcome significance of thallium-201 and iodine-123-BMIPP perfusion- metabolism mismatch in preinfarction angina. J Nucl Med. 1998;39:1492–9.

    PubMed  CAS  Google Scholar 

  23. Inglese E, Leva L, Matheoud R, Sacchetti G, Secco C, Gandolfo P, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT. J Nucl Med. 2007;48:1662–9.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryogo Minamimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minamimoto, R., Morooka, M., Miyata, Y. et al. Incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening. Ann Nucl Med 27, 572–580 (2013). https://doi.org/10.1007/s12149-013-0721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0721-9

Keywords

Navigation