Skip to main content

Advertisement

Log in

Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Errors in quantification of carotid positron emission tomography (PET) in simultaneous PET/magnetic resonance (PET/MR) imaging when not incorporating bone in MR-based attenuation correction (MRAC) maps, and possible solutions, remain to be fully explored. In this study, we demonstrated techniques to improve carotid vascular PET/MR quantification by adding a bone tissue compartment to MRAC maps and deriving continuous Dixon-based MRAC (MRACCD) maps. We demonstrated the feasibility of applying ultrashort echo time-based bone segmentation and generation of continuous Dixon MRAC to improve PET quantification on five subjects. We examined four different MRAC maps: system standard PET/MR MRAC map (air, lung, fat, soft tissue) (MRACPET/MR), standard PET/MR MRAC map with bone (air, lung, fat, soft tissue, bone) (MRACPET/MRUTE), MRACCD map (no bone) and continuous Dixon-based MRAC map with bone (MRACCDUTE). The same PET emission data was then reconstructed with each respective MRAC map and a CTAC map (PETPET/MR, PETPET/MRUTE, PETCD, PECDUTE) to assess effects of the different attenuation maps on PET quantification in the carotid arteries and neighboring tissues. Quantitative comparison of MRAC attenuation values for each method compared to CTAC showed small differences in the carotid arteries with UTE-based segmentation of bone included and/or continuous Dixon MRAC; however, there was very good correlation for all methods in the voxel-by-voxel comparison. ROI-based analysis showed a similar trend in the carotid arteries with the lowest correlation to PETCTAC being PETPETMR and the highest correlation to PETCTAC being PETCDUTE. We have demonstrated the feasibility of applying UTE-based segmentation and continuous Dixon MRAC maps to improve carotid PET/MR vascular quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, Fuster V, Ballantyne CM, Stein EA, Tardif J-C, Rudd JHF, Farkouh ME, Tawakol A (2011) Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378(9802):1547–1559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Mani V, Woodward M, Samber D, Bucerius J, Tawakol A, Kallend D, Rudd JHF, Abt M, Fayad ZA (2014) Predictors of change in carotid atherosclerotic plaque inflammation and burden as measured by 18-FDG-PET and MRI, respectively, in the dal-PLAQUE study. Int J Cardiovasc Imaging 30(3):571–582

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heusch P, Buchbender C, Beiderwellen K, Nensa F, Hartung-Knemeyer V, Lauenstein TC, Bockisch A, Forsting M, Antoch G, Heusner TA (2013) Standardized uptake values for [(18)F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 82(5):870–876

    Article  PubMed  Google Scholar 

  4. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855

    Article  PubMed  Google Scholar 

  5. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, Schulthess GK, Kuhn FP (2012) PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39(7):1154–1160

    Article  PubMed  Google Scholar 

  6. Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27(2):152–162

    Article  PubMed  CAS  Google Scholar 

  7. Aznar MC, Sersar R, Saabye J, Ladefoged CN, Andersen FL, Rasmussen JH, Löfgren J, Beyer T (2014) Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol 83(7):1177–1183

    Article  PubMed  CAS  Google Scholar 

  8. Keereman V, Van Holen R, Mollet P, Vandenberghe S (2011) The effect of errors in segmented attenuation maps on PET quantification. Med Phys 38(11):6010–6019

    Article  PubMed  Google Scholar 

  9. Andersen FL, Ladefoged CN, Beyer T, Keller SH, Hansen AE, Højgaard L, Kjær A, Law I, Holm S (2014) Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 84:206–216

    Article  PubMed  Google Scholar 

  10. Wiesmüller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, Schmidt D, Beck M, Kuwert T, von Gall CC (2013) Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 40(1):12–21

    Article  PubMed  Google Scholar 

  11. Ripa RS, Knudsen A, Hag AMF, Lebech A-M, Loft A, Keller SH, Hansen AE, von Benzon E, Højgaard L, Kjær A (2013) Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging 3(4):361–371

    PubMed  PubMed Central  Google Scholar 

  12. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefdhotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50(4):520–5266

    Article  PubMed  Google Scholar 

  13. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51(5):812–818

    Article  PubMed  Google Scholar 

  14. Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M, Sorensen AG (2010) Toward implementing an MRI-based PET attenuation–correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 51(9):1431–1438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53(5):796–804

    Article  PubMed  Google Scholar 

  16. Navalpakkam BK, Braun H, Kuwert T, Quick HH (2013) Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Invest Radiol 48(5):323–332

    Article  PubMed  Google Scholar 

  17. Delso G, Zeimpekis K, Carl M, Wiesinger F, Hüllner M, Veit-haibach P (2014) Cluster-based segmentation of dual-echo ultra-short echo time images for PET/MR bone localization, pp 1–13

  18. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708

    Article  PubMed  Google Scholar 

  19. Marshall HR, Patrick J, Laidley D, Prato FS, Butler J, Théberge J, Thompson RT, Stodilka RZ (2013) Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI. Med Phys 40(8):082509

    Article  PubMed  Google Scholar 

  20. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922

    Article  PubMed  Google Scholar 

  21. Burger C, Goerres G, Schoenes S, Buck A, Lonn AHR, Von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29(7):922–927

    Article  PubMed  CAS  Google Scholar 

  22. Bini J, Izquierdo-Garcia D, Mateo J, Machac J, Narula J, Fuster V, Fayad ZA (2013) Preclinical evaluation of MR attenuation correction versus CT attenuation correction on a sequential whole-body MR/PET scanner. Invest Radiol 48(5):313–322

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bini J, Robson PM, Calcagno C, Eldib M, Fayad ZA (2015) Quantitative carotid PET/MR imaging: clinical evaluation of MR-attenuation correction versus CT-attenuation correction in 18F-FDG PET/MR emission data and comparison to PET/CT. Am J Nucl Med Mol Imaging (in press)

  24. Quick HH (2014) Integrated PET/MR. J Magn Reson Imaging 39(2):243–258

    Article  PubMed  Google Scholar 

  25. Eldib M, Bini J, Robson PM, Faul D, Fayad ZA (2014) Attenuation correction for flexible MRI coils using the ultra-short echo time sequence in MR/PET imaging. Proc Intl Soc Mag Reson Med 22:0784

    Google Scholar 

  26. Rudd JHF, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, Rafique A, Hargeaves R, Farkouh M, Fuster V, Fayad ZA (2008) Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 49(6):871–878

    Article  PubMed  Google Scholar 

  27. Bucerius J, Mani V, Moncrieff C, Machac J, Fuster V, Farkouh ME, Tawakol A, Rudd JHF, Fayad ZA (2014) Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging 41(2):369–383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Siemens Healthcare for technical support. This work was supported in part by NIH/NHLBI RO1 HL071021 and NIH/NCATS CTSA UL1TR000067) (Z.A.F.) and an American Heart Association Student Scholarship in Cardiovascular Disease (J.B.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahi A. Fayad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bini, J., Eldib, M., Robson, P.M. et al. Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction. Int J Cardiovasc Imaging 32, 61–71 (2016). https://doi.org/10.1007/s10554-015-0661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0661-7

Keywords

Navigation