Skip to main content
Log in

Transmural myocardial perfusion gradients in relation to coronary artery stenoses severity assessed by cardiac multidetector computed tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To assess the relationship between epicardial coronary artery stenosis severity and the corresponding regional transmural perfusion at rest and during adenosine stress, using multidetector computed tomography (MDCT). We evaluated the relationship between the severity of coronary artery diameter stenosis assessed by MDCT angiography and semi-quantitative myocardial MDCT perfusion in 200 symptomatic patients. The perfusion index (PI = mean myocardial attenuation density/mean left ventricular lumen attenuation density) at rest and during adenosine stress, the myocardial perfusion reserve (MPR = stress − PI/rest − PI), and the transmural perfusion ratio (TPR = subendocardium/subepicardium) were calculated. A coronary artery stenosis ≥50 % was present in 49 patients (25 %). Rest-PI and rest-TPR values were similar in patients with and without a coronary artery stenosis ≥50 %, whereas stress-PI, stress-TPR and MPR were significantly reduced in patients with a stenosis ≥50 % (p < 0.001, p < 0.0001 and p = 0.02, respectively). Subendocardial PI was significantly higher than subepicardial PI at rest and during stress for patients without a significant stenosis, whereas this difference was blurred during stress in patients with ≥50 % stenosis. In a broad spectrum of stenosis severity groups, TPR at rest remained unchanged until the group of patients with total occlusions, whereas TPR during stress decreased progressively when a threshold of 50 % was superseded. In this study we establish the relationship between semi-quantitative perfusion measurements by MDCT and severity of coronary artery stenoses and find the transmural myocardial perfusion ratio to be a potential strong functional index of the hemodynamic significance of coronary artery atherosclerotic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33(1):87–94

    Article  CAS  PubMed  Google Scholar 

  2. Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34(1):48–55

    Article  CAS  PubMed  Google Scholar 

  3. Kirkeeide RL, Gould KL, Parsel L (1986) Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 7(1):103–113

    Article  CAS  PubMed  Google Scholar 

  4. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330(25):1782–1788. doi:10.1056/nejm199406233302503

    Article  CAS  PubMed  Google Scholar 

  5. Goldstein RA, Kirkeeide RL, Demer LL, Merhige M, Nishikawa A, Smalling RW, Mullani NA, Gould KL (1987) Relation between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man. J Clin Invest 79(5):1473–1478. doi:10.1172/jci112976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, Phelps ME, Schelbert HR (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91(7):1944–1951

    Article  PubMed  Google Scholar 

  7. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310(13):819–824. doi:10.1056/nejm198403293101304

    Article  CAS  PubMed  Google Scholar 

  8. Harrison DG, White CW, Hiratzka LF, Doty DB, Barnes DH, Eastham CL, Marcus ML (1984) The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 69(6):1111–1119

    Article  CAS  PubMed  Google Scholar 

  9. Naya M, Murthy VL, Blankstein R, Sitek A, Hainer J, Foster C, Gaber M, Fantony JM, Dorbala S, Di Carli MF (2011) Quantitative relationship between the extent and morphology of coronary atherosclerotic plaque and downstream myocardial perfusion. J Am Coll Cardiol 58(17):1807–1816. doi:10.1016/j.jacc.2011.06.051

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hoffman JI (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29(6):429–464

    Article  CAS  PubMed  Google Scholar 

  11. Ball RM, Bache RJ (1976) Distribution of myocardial blood flow in the exercising dog with restricted coronary artery inflow. Circ Res 38(2):60–66

    Article  CAS  PubMed  Google Scholar 

  12. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C (2007) 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J 28(24):3042–3050. doi:10.1093/eurheartj/ehm466

    Article  PubMed  Google Scholar 

  13. George RT, Silva C, Cordeiro MA, DiPaula A, Thompson DR, McCarthy WF, Ichihara T, Lima JA, Lardo AC (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48(1):153–160. doi:10.1016/j.jacc.2006.04.014

    Article  PubMed  Google Scholar 

  14. Kuhl JT, Linde JJ, Fuchs A, Kristensen TS, Kelbaek H, George RT, Hove JD, Kofoed KF (2012) Patterns of myocardial perfusion in humans evaluated with contrast-enhanced 320 multidetector computed tomography. Int J Cardiovasc Imaging 28(7):1739–1747. doi:10.1007/s10554-011-9986-z

    Article  PubMed  Google Scholar 

  15. George RT, Arbab-Zadeh A, Miller JM, Kitagawa K, Chang HJ, Bluemke DA, Becker L, Yousuf O, Texter J, Lardo AC, Lima JA (2009) Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2(3):174–182. doi:10.1161/circimaging.108.813766

    Article  PubMed Central  PubMed  Google Scholar 

  16. Linde JJ, Kofoed KF, Sorgaard M, Kelbaek H, Jensen GB, Nielsen WB, Hove JD (2013) Cardiac computed tomography guided treatment strategy in patients with recent acute-onset chest pain: Results from the randomised, controlled trial: CArdiac cT in the treatment of acute CHest pain (CATCH). Int J Cardiol. doi:10.1016/j.ijcard.2013.08.020

  17. Linde JJ, Hove JD, Kuhl JT, Sorgaard M, Kelbaek H, Nielsen WB, Kofoed KF (2014) Clinical feasibility of myocardial computed tomographic perfusion imaging in patients with recent acute-onset chest pain. Int J Cardiol 174(1):195–197. doi:10.1016/j.ijcard.2014.03.209

    Article  PubMed  Google Scholar 

  18. Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24(5):535–546. doi:10.1007/s10554-008-9308-2

    Article  PubMed  Google Scholar 

  19. Steigner ML, Otero HJ, Cai T, Mitsouras D, Nallamshetty L, Whitmore AG, Ersoy H, Levit NA, Di Carli MF, Rybicki FJ (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25(1):85–90. doi:10.1007/s10554-008-9347-8

    Article  PubMed  Google Scholar 

  20. Vavere AL, Simon GG, George RT, Rochitte CE, Arai AE, Miller JM, Di Carli M, Arbab-Zadeh A, Dewey M, Niinuma H, Laham R, Rybicki FJ, Schuijf JD, Paul N, Hoe J, Kuribyashi S, Sakuma H, Nomura C, Yaw TS, Kofoed KF, Yoshioka K, Clouse ME, Brinker J, Cox C, Lima JA (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: design and implementation of the CORE320 multicenter, multinational diagnostic study. J Cardiovasc Comput Tomogr 5(6):370–381. doi:10.1016/j.jcct.2011.11.001

    Article  PubMed  Google Scholar 

  21. George RT, Arbab-Zadeh A, Cerci RJ, Vavere AL, Kitagawa K, Dewey M, Rochitte CE, Arai AE, Paul N, Rybicki FJ, Lardo AC, Clouse ME, Lima JA (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. AJR Am J Roentgenol 197(4):829–837. doi:10.2214/ajr.10.5689

    Article  PubMed Central  PubMed  Google Scholar 

  22. Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM, Budoff MJ, Cheng V, DeFrance T, Hellinger JC, Karlsberg RP (2009) SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 3(2):122–136. doi:10.1016/j.jcct.2009.01.001

    Article  PubMed  Google Scholar 

  23. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  24. Ko BS, Cameron JD, Leung M, Meredith IT, Leong DP, Antonis PR, Crossett M, Troupis J, Harper R, Malaiapan Y, Seneviratne SK (2012) Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging 5(11):1097–1111. doi:10.1016/j.jcmg.2012.09.004

    Article  PubMed  Google Scholar 

  25. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffman EJ, Gomes A, Kuhl DE (1982) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 49(5):1197–1207

    Article  CAS  PubMed  Google Scholar 

  26. Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL, Wong WH, Tewson TJ, Berridge MS, Bolomey LA, Hartz RK, Smalling RW et al (1986) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 7(4):775–789

    Article  CAS  PubMed  Google Scholar 

  27. Mohlenkamp S, Behrenbeck TR, Lerman A, Lerman LO, Pankratz VS, Sheedy PF II, Weaver AL, Ritman EL (2001) Coronary microvascular functional reserve: quantification of long-term changes with electron-beam CT preliminary results in a porcine model. Radiology 221(1):229–236. doi:10.1148/radiol.2211001004

    Article  CAS  PubMed  Google Scholar 

  28. Wu XS, Ewert DL, Liu YH, Ritman EL (1992) In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 85(2):730–737

    Article  CAS  PubMed  Google Scholar 

  29. Wang T, Wu X, Chung N, Ritman EL (1989) Myocardial blood flow estimated by synchronous, multislice, high-speed computed tomography. IEEE Trans Med Imaging 8(1):70–77. doi:10.1109/42.20364

    Article  CAS  PubMed  Google Scholar 

  30. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88(3):1009–1086. doi:10.1152/physrev.00045.2006

    Article  CAS  PubMed  Google Scholar 

  31. Muehling OM, Jerosch-Herold M, Panse P, Zenovich A, Wilson BV, Wilson RF, Wilke N (2004) Regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment with magnetic resonance perfusion imaging. J Cardiovasc Magn Reson 6(2):499–507

    Article  PubMed  Google Scholar 

  32. Larghat A, Biglands J, Maredia N, Greenwood JP, Ball SG, Jerosch-Herold M, Radjenovic A, Plein S (2012) Endocardial and epicardial myocardial perfusion determined by semi-quantitative and quantitative myocardial perfusion magnetic resonance. Int J Cardiovasc Imaging 28(6):1499–1511. doi:10.1007/s10554-011-9982-3

    Article  PubMed  Google Scholar 

  33. Vermeltfoort IA, Raijmakers PG, Lubberink M, Germans T, van Rossum AC, Lammertsma AA, Knaapen P (2011) Feasibility of subendocardial and subepicardial myocardial perfusion measurements in healthy normals with (15)O-labeled water and positron emission tomography. J Nucl Cardiol 18(4):650–656. doi:10.1007/s12350-011-9375-y

    Article  PubMed Central  PubMed  Google Scholar 

  34. Cury RC, Magalhaes TA, Paladino AT, Shiozaki AA, Perini M, Senra T, Lemos PA, Rochitte CE (2011) Dipyridamole stress and rest transmural myocardial perfusion ratio evaluation by 64 detector-row computed tomography. J Cardiovasc Comput Tomogr 5(6):443–448. doi:10.1016/j.jcct.2011.10.012

    Article  PubMed  Google Scholar 

  35. Steigner ML, Mitsouras D, Whitmore AG, Otero HJ, Wang C, Buckley O, Levit NA, Hussain AZ, Cai T, Mather RT, Smedby O, DiCarli MF, Rybicki FJ (2010) Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circ Cardiovasc Imaging 3(2):179–186. doi:10.1161/circimaging.109.854307

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wong DT, Ko BS, Cameron JD, Nerlekar N, Leung MC, Malaiapan Y, Crossett M, Leong DP, Worthley SG, Troupis J, Meredith IT, Seneviratne SK (2013) Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 61(12):1271–1279. doi:10.1016/j.jacc.2012.12.029

    Article  PubMed  Google Scholar 

  37. Wong DT, Ko BS, Cameron JD, Leong DP, Leung MC, Malaiapan Y, Nerlekar N, Crossett M, Troupis J, Meredith IT, Seneviratne SK (2014) Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion + computed tomography angiography with transluminal attenuation gradient + computed tomography angiography against invasive fractional flow reserve. J Am Coll Cardiol 63(18):1904–1912. doi:10.1016/j.jacc.2014.02.557

    Article  PubMed  Google Scholar 

  38. Rochitte CE, George RT, Chen MY, Arbab-Zadeh A, Dewey M, Miller JM, Niinuma H, Yoshioka K, Kitagawa K, Nakamori S, Laham R, Vavere AL, Cerci RJ, Mehra VC, Nomura C, Kofoed KF, Jinzaki M, Kuribayashi S, de Roos A, Laule M, Tan SY, Hoe J, Paul N, Rybicki FJ, Brinker JA, Arai AE, Cox C, Clouse ME, Di Carli MF, Lima JA (2013) Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J. doi:10.1093/eurheartj/eht488

Download references

Acknowledgments

Research Radiographer Tina Bock-Pedersen, Chief Radiographer Kim Madsen and project nurses Kirsten Thrysøe and Christina Møller are thanked for excellent technical assistance. The project was supported by The Danish Heart Foundation [Grant number 12-04-R90_A3921-22718], Copenhagen, Denmark; the John and Birthe Meyer Foundation, Copenhagen, Denmark; the AP Møller and Chastine Mc-Kinney Møller Foundation, Copenhagen, Denmark; the Toyota Foundation, Copenhagen, Denmark and the Danish Agency for Science, Technology and Innovation by The Danish Council for Strategic Research (EDITORS: Eastern Denmark Initiative to imprOve Revascularization Strategies, Grant 09-066994).

Conflict of interest

Drs. Klaus F. Kofoed and Jesper J. Linde have received lecturing fees from Toshiba Medical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper James Linde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linde, J.J., Kühl, J.T., Hove, J.D. et al. Transmural myocardial perfusion gradients in relation to coronary artery stenoses severity assessed by cardiac multidetector computed tomography. Int J Cardiovasc Imaging 31, 171–180 (2015). https://doi.org/10.1007/s10554-014-0530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0530-9

Keywords

Navigation