Skip to main content
Log in

Comparison of coronary flow reserve estimated by dynamic radionuclide SPECT and multi-detector x-ray CT

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Recent technical advances in multi-detector computed tomography (MDCT) allow for assessment of coronary flow reserve (CFR). We compared regional CFR by dynamic SPECT and by dynamic MDCT in patients with suspected or known coronary artery disease (CAD).

Methods

Thirty-five patients, (29 males, mean age 69 years) with greater than average Framingham risk of CAD, underwent dipyridamole vasodilator stress imaging. CFR was estimated using dynamic SPECT and dynamic MDCT imaging in the same patients. Myocardial perfusion findings were correlated with obstructive CAD (≥50% luminal narrowing) on CT coronary angiography (CA).

Results

Mean CFR estimated by SPECT and MDCT in 595 myocardial segments was not different (1.51 ± 0.46 vs. 1.50 ± 0.37, p = NS). Correlation of segmental CFR by SPECT and MDCT was fair (r 2 = 0.39, p < 0.001). Bland-Altman analysis revealed that MDCT in comparison to SPECT systematically underestimated CFR in higher CFR ranges. By CTCA, 12 patients had normal CA, 11 had non-obstructive, and 12 had obstructive CAD. CFR by both techniques was significantly higher in territories of normal CA than in territories subtended by non-obstructive or obstructive CAD. SPECT CFR was also significantly different in territories subtended by non-obstructive and obstructive CAD, whereas MDCT CFR was not.

Conclusion

Despite relative underestimation of high CFR values, MDCT CFR shows promise for assessing the pathophysiological significance of anatomic CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CFR:

Coronary flow reserve

CTCA:

Computed tomography coronary angiography

MBF:

Myocardial blood flow

MDCT:

Multi-detector computed tomography

MPI:

Myocardial perfusion imaging

ROI:

Region of interest

SPECT:

Single-photon emission computed tomography

References

  1. Ho KT, Ong HY, Tan G, Yong QW. Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT. Eur Heart J Cardiovasc Imaging. 2015;16:300-6.

    Article  PubMed  Google Scholar 

  2. Rossi A, Uitterdijk A, Dijkshoorn M, Klotz E, Dharampal A, Van Straten M, et al. Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve. Eur Heart J Cardiovasc Imaging. 2013;14:331-8.

    Article  PubMed  Google Scholar 

  3. Bamberg F, Marcus RP, Becker A, Hildebrandt K, Bauner K, Schwarz F, et al. Dynamic myocardial CT perfusion imaging for evaluation of myocardial ischemia as determined by MR imaging. JACC Cardiovasc Imaging. 2014;7:267-77.

    Article  PubMed  Google Scholar 

  4. Greif M, von Ziegler F, Bamberg F, Tittus J, Schwarz F, D’Anastasi M, et al. CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart. 2013;99:1004-11.

    Article  PubMed  Google Scholar 

  5. Bamberg F, Hinkel R, Marcus RP, Baloch E, Hildebrandt K, Schwarz F, et al. Feasibility of dynamic CT-based adenosine stress myocardial perfusion imaging to detect and differentiate ischemic and infarcted myocardium in an large experimental porcine animal model. Int J Cardiovasc Imaging. 2014;30:803-12.

    Article  PubMed  Google Scholar 

  6. Mahnken AH, Klotz E, Pietsch H, Schmidt B, Allmendinger T, Haberland U, et al. Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: Preliminary animal experience. Invest Radiol. 2010;45:298-305.

    PubMed  Google Scholar 

  7. Gould KL, Lipscomb K, Hamilton GW. A physiologic basis for assessing critical coronary stenosis. Am J Cardiol. 1974;33:87-94.

    Article  CAS  PubMed  Google Scholar 

  8. Storto G, Cirillo P, Vicario ML, Pellegrino T, Sorrentino AR, Petretta M, et al. Estimation of coronary flow reserve by Tc-99m sestamibi imaging in patients with coronary artery disease: Comparison with the results of intracoronary Doppler technique. J Nucl Cardiol. 2004;11:682-8.

    Article  PubMed  Google Scholar 

  9. Ito Y, Katoh C, Noriyasu K, Kuge Y, Furuyama H, Morita K, et al. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: Comparison with the results of [15O]H2O PET. Eur J Nucl Med Mol Imaging. 2003;30:281-7.

    Article  CAS  PubMed  Google Scholar 

  10. Glover DK, Ruiz M, Yang JY, Smith WH, Watson DD, Beller GA. Myocardial 99mTc-tetrofosmin uptake during adenosine-induced vasodilatation with either a critical or mild coronary stenosis: Comparison with 201Tl and regional myocardial blood flow. Circulation. 1997;96:2332-8.

    Article  CAS  PubMed  Google Scholar 

  11. Sambuceti G, Marzullo P, Giorgetti A, Neglia D, Marzilli M, Salvadori P, et al. Global alteration in perfusion response to increasing oxygen consumption in patients with single-vessel coronary artery disease. Circulation. 1994;90:1696-705.

    Article  CAS  PubMed  Google Scholar 

  12. Marcus ML, Wilson RF, White CW. Methods of measurement of myocardial blood flow in patients: A critical review. Circulation. 1987;76:245-53.

    Article  CAS  PubMed  Google Scholar 

  13. Petretta M, Storto G, Pellegrino T, Bonaduce D, Cuocolo A. Quantitative assessment of myocardial blood flow with SPECT. Prog Cardiovasc Dis. 2015;57:607-14.

    Article  PubMed  Google Scholar 

  14. Marini C, Bezante GP, Gandolfo P, Modonesi E, Morbelli S, DePascale A, et al. Optimization of flow reserve measurement using SPECT technology to evaluate the determinants of coronary microvascular dysfunction in diabetes. Eur J Nucl Med Mol Imaging. 2010;37:357-67.

    Article  PubMed  Google Scholar 

  15. Marini C, Giusti M, Armonino R, Ghigliotti G, Bezante G, Vera L, et al. Reduced coronary flow reserve in patients with primary hyperparathyroidism: A study by G-SPECT myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2010;37:2256-63.

    Article  PubMed  Google Scholar 

  16. Capitanio S, Sambuceti G, Giusti M, Morbelli S, Murialdo G, Garibotto G, et al. 1,25-dihydroxy vitamin D and coronary microvascular function. Eur J Nucl Med Mol Imaging. 2013;40:280-9.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837-47.

    Article  CAS  PubMed  Google Scholar 

  18. Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: A report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2014;8:342-58.

    Article  PubMed  Google Scholar 

  19. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539-42.

    Article  PubMed  Google Scholar 

  20. Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307-10.

    Article  CAS  PubMed  Google Scholar 

  21. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-74.

    Article  CAS  PubMed  Google Scholar 

  22. Sugihara H, Yonekura Y, Kataoka K, Fukai D, Kitamura N, Taniguchi Y. Estimation of coronary flow reserve with the use of dynamic planar and SPECT images of Tc-99m tetrofosmin. J Nucl Cardiol. 2001;8:575-9.

    Article  CAS  PubMed  Google Scholar 

  23. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959;197:1205-10.

    CAS  PubMed  Google Scholar 

  24. Crone C. Permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand. 1963;58:292-305.

    Article  CAS  PubMed  Google Scholar 

  25. Vogel R, Indermühle A, Reinhardt J, Meier P, Siegrist PT, Namdar M, et al. The quantification of absolute myocardial perfusion in humans using contrast echocardiography: Algorithm and validation. J Am Coll Cardiol. 2005;45:754-62.

    Article  PubMed  Google Scholar 

  26. Sambuceti G, Marzilli M, Mari A, Marini C, Marzullo P, Testa R, et al. Clinical evidence for myocardial derecruitment downstream from severe stenosis: Pressure-flow control interaction. Am J Physiol Heart Circ Physiol. 2000;279:H2641-8.

    CAS  PubMed  Google Scholar 

  27. Sambuceti G, Mario M, Mari A, Marini C, Schluter M, Testa R, et al. Coronary microcirculatory vasoconstriction is heterogeneously distributed in acutely ischemic myocardium. Am J Physiol Heart Circ Physiol. 2005;288:H2298-305.

    Article  CAS  PubMed  Google Scholar 

  28. Newhouse JH, Murphy RX Jr. Tissue distribution of soluble contrast: Effect of dose variation and changes with time. Am J Roentgenol. 1981;136:463-7.

    Article  CAS  Google Scholar 

  29. Canty JM, Judd RM, Brody AS, Klocke FJ. First-pass entry of nonionic contrast agent into the myocardial extravascular space. Effects on radiographic estimates of transit time and blood volume. Circulation. 1991;84:2071-8.

    Article  CAS  PubMed  Google Scholar 

  30. Limbruno U, Petronio AS, Amoroso G, Baglini R, Paterni G, Merelli A, et al. The impact of coronary artery disease on the coronary vasomotor response to nonionic contrast media. Circulation. 2000;101:491-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article was finalized under the auspices of the “Mentorship at Distance” committee of the Journal of Nuclear Cardiology. We gratefully acknowledge the editorial suggestions by Frans J. Th. Wackers, MD, PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bauckneht MD.

Additional information

See related editorial, doi: 10.1007/s12350-016-0528-x.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pptx 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, C., Seitun, S., Zawaideh, C. et al. Comparison of coronary flow reserve estimated by dynamic radionuclide SPECT and multi-detector x-ray CT. J. Nucl. Cardiol. 24, 1712–1721 (2017). https://doi.org/10.1007/s12350-016-0492-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0492-5

Keywords

Navigation