Skip to main content
Log in

Options for reducing patient radiation dose with cardiovascular computed tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Computed Tomography (CT) scanner manufacturers and users are aggressively pursuing radiation exposure reduction strategies for cardiovascular imaging. Strategies include the design of scanner hardware to prevent X-rays not contributing data to image formation from reaching the patient, user manipulation of scan parameters to decrease the number and/or energy of the X-ray photons interacting with the patient, and hardware and software improvements to increase efficiency of data detection and utilization. This paper provides an overview of CT technology with an emphasis on dose related features and scan parameters and describes in detail the options currently available for reducing radiation exposure with cardiovascular CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mettler FA, Huda W, Yoshizumi TT et al (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263. doi:10.1148/radiol.2481071451

    Article  PubMed  Google Scholar 

  2. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323. doi:10.1001/jama.298.3.317

    Article  PubMed  CAS  Google Scholar 

  3. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284. doi:10.1056/NEJMra072149

    Article  PubMed  CAS  Google Scholar 

  4. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507. doi:10.1001/jama.2009.54

    Article  PubMed  CAS  Google Scholar 

  5. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268. doi:10.1007/s00330-005-2919-2

    Article  PubMed  Google Scholar 

  6. Kitagawa K, Lardo AC, George RT (2009) Prospective ECG-gated 320 row detector computed tomography: implications for CT angiography and perfusion imaging. Int J Cardiovasc Imaging. doi:10.1007/s10554-009-9433-6

    PubMed  Google Scholar 

  7. Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24(5):535–546. doi:10.1007/s10554-008-9308-2

    Article  PubMed  Google Scholar 

  8. Petersilka M, Bruder H, Krauss B, et al (2008) Technical principles of dual source CT. Eur J Radiol 68(3):362–368. doi:10.1016/j.ejrad.2008.08.013

    Article  PubMed  Google Scholar 

  9. Primak AN, McCollough CH, Bruesewitz MR et al (2006) Relationship between noise, dose, and pitch in cardiac multi–detector row CT. Radiographics 26:1785–1794. doi:10.1148/rg.266065063

    Article  PubMed  Google Scholar 

  10. Bushberg JT, Seibert JA, Leidholdt EM, Boone JM (2002) The essential physics of medical imaging, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  11. Flohr TG, Schaller S, Stierstorfer K et al (2005) Multi-detector row CT systems and image reconstruction techniques. Radiology 235:756–773. doi:10.1148/radiol.2353040037

    Article  PubMed  Google Scholar 

  12. Van der Molen AJ, Geleijns J (2007) Overranging in multisection CT: quantification and relative contribution to dose–comparison of four 16-section CT scanners. Radiology 242(1):208–218. doi:10.1148/radiol.2421051350

    Article  PubMed  Google Scholar 

  13. Hsieh J, Londt J, Vass M et al (2006) Step-and-shoot data acquisition for cardiac X-ray computed tomography. Med Phys 33(11):4236–4248. doi:10.1118/1.2361078

    Article  PubMed  Google Scholar 

  14. Kalendar WA (2000) Computed tomography: fundamentals, system technology, image quality, and applications. Publicis MCD Verlag, Germany

    Google Scholar 

  15. Halliburton SS, Stillman AE, Flohr T et al (2003) Do segmented reconstruction algorithms for cardiac multi-slice computed tomography improve image quality? Herz 28(1):20–31. doi:10.1007/s00059-003-2445-4

    Article  PubMed  Google Scholar 

  16. European Commission (2000) European guidelines on quality criteria for computed tomography, EUR 16262EN. Luxembourg: Office for Official Publications of the European Communities. http://www.drs.dk/guidelines/ct/quality/mainindex.htm. Accessed 2 Feb 2009

  17. Bongartz G, Golding SJ Jurik AG et al (2004) European guidelines for multislice computed tomography. http://www.msct.eu/CT_Quality_Criteria.htm#Download%20the%202004%20CT%20Quality%20Criteria. Accessed 2 Feb 2009

  18. McCollough C, Cody D, Edyvean S, et al (2008) The measurement, reporting, and management of radiation dose in CT. Tech. Rep.96 American Association of Physicists in Medicine. http://www.aapm.org/pubs/reports/rpt_96.pdf. Accessed 2 Feb 2009

  19. Shrimpton PC (2004) Assessment of patient dose in CT. Tech. Rep. NRPB-PE/1/2004 National Radiological Protection Board. http://www.msct.eu/PDF_FILES/EC CA Report D5—Dosimetry.pdf Accessed 2 Feb 2009

  20. Tzedakis A, Damilakis J, Perisinakis K et al (2005) The effect of z overscanning on patient effective dose from multi-detector helical computed tomography examinations. Med Phys 32(6):1621–1629. doi:10.1118/1.1924309

    Article  PubMed  CAS  Google Scholar 

  21. Walker MJ, Olzsewki ME, Desai MY et al (2009) New radiation dose saving technologies for 256-slice cardiac computed tomography angiography. Int J Cardiovasc Imaging. doi:10.1007/s10554-009-9444-3

    Google Scholar 

  22. McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243(3):775–784. doi:10.1148/radiol.2433061165

    Article  PubMed  Google Scholar 

  23. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753. doi:10.1148/radiol.2463070989

    Article  PubMed  Google Scholar 

  24. Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430. doi:10.1148/radiol.2482071804

    Article  PubMed  Google Scholar 

  25. Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197. doi:10.1093/eurheartj/ehm613

    Article  PubMed  Google Scholar 

  26. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137. doi:10.1136/hrt.2008.149971

    Article  PubMed  CAS  Google Scholar 

  27. Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437. doi:10.1148/radiol.2482072192

    Article  PubMed  Google Scholar 

  28. Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-andshoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80. doi:10.1148/radiol.2483072032

    Article  PubMed  Google Scholar 

  29. Earls JP, Schrack EC (2009) Prospectively-gated low-dose CCTA: 24 months experience in more than 2,000 clinical cases. Int J Cardiovasc Imaging. doi:10.1007/s10554-008-9388-z

    Google Scholar 

  30. Hein F, Meyer T, Hadamitzky M et al (2009) Prospective ECG-triggered sequential scan protocol for coronary dual-source CT angiography: initial experience. Int J Cardiovasc Imaging. doi:10.1007/s10554-008-9409-y

    PubMed  Google Scholar 

  31. Weigold WG, Olszewski ME, Walker MJ (2009) Low-dose prospectively gated 256-slice coronary computed tomography angiography. Int J Cardiovasc Imaging. doi:10.1007/s10554-009-9439-0

    PubMed  Google Scholar 

  32. Hameed TA, Teague SD, Vembar M et al (2009) Low radiation dose ECG-gated chest CT angiography on a 256-slice multidetector CT scanner. Int J Cardiovasc Imaging. doi:10.1007/s10554-009-9428-3

    PubMed  Google Scholar 

  33. Jakobs T, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086. doi:10.1007/s00330-001-1278-x

    Article  PubMed  Google Scholar 

  34. Stolzmann P, Scheffel H, Schertler T et al (2008) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18(3):592–599. doi:10.1007/s00330-007-0786-8

    Article  PubMed  Google Scholar 

  35. Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42(8):543–549. doi:10.1097/RLI.0b013e31803b93cf

    Article  PubMed  Google Scholar 

  36. Bardo D, Kachenoura N, Newby B et al (2008) Multidetector computed tomography evaluation of left ventricular volumes: sources of error and guidelines for their minimization. JCCT 2(4):222–230

    Google Scholar 

  37. Jung B, Mahnken AH, Stargardt A et al (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13:2560–2566. doi:10.1007/s00330-003-2111-5

    Article  PubMed  CAS  Google Scholar 

  38. McCollough CH, Ulzheimer S, Halliburton S et al (2007) A multi-institutional, multi-manufacturer, international standard for the quantification of coronary artery calcium using cardiac CT. Radiology 243(2):527–538. doi:10.1148/radiol.2432050808

    Article  PubMed  Google Scholar 

  39. Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236(2):565–571. doi:10.1148/radiol.2362041327

    Article  PubMed  Google Scholar 

  40. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037. doi:10.1007/s00330-007-0584-3

    Article  PubMed  Google Scholar 

  41. Mulkens TH, Bellinck P, Baeyaert M et al (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237:213–223. doi:10.1148/radiol.2363041220

    Article  PubMed  Google Scholar 

  42. Blankstein R, Okada DR, Rocha-Filho JA et al (2009) Cardiac myocardial perfusion imaging using dual source computed tomography. Int J Cardiovasc Imaging. doi:10.1007/s10554-009-9438-1

    PubMed  Google Scholar 

  43. Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18(9):1809–1817. doi:10.1007/s00330-008-0966-1

    Article  PubMed  Google Scholar 

  44. Luaces M, Akers S, Litt H (2009) Low kVp imaging for dose reduction in dual-source cardiac CT. Int J Cardiovasc Imaging. doi:10.1007/s10554-009-9449-y

    PubMed  Google Scholar 

  45. Thibault J, Sauer KD, Bouman CA et al (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11):4526–4544. doi:10.1118/1.2789499

    Article  PubMed  Google Scholar 

  46. Wang G, Yu H, De Man B (2008) An outlook on X-ray CT research and development. Med Phys 35(3):1051–1064

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Simon Halliburton.

Additional information

Conflict of Interest

Sandra Simon Halliburton, Ph.D.: Research grant from Siemens Medical Solutions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halliburton, S.S. Options for reducing patient radiation dose with cardiovascular computed tomography. Int J Cardiovasc Imaging 25 (Suppl 2), 153–164 (2009). https://doi.org/10.1007/s10554-009-9450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9450-5

Keywords

Navigation