Skip to main content
Log in

Application of Laser Videographic Cryoscopic Micro Osmometry in Measurements of Temperature Depression in Petroleum Products

  • METHODS OF ANALYSIS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

This paper describes using the familiar MT-2 platform to build an instrument capable of supporting dynamic observations and recording of the kinetics of physicochemical processes during cryoscopic osmometry of crude oil media and refined petroleum products in automatic mode. Modifications of the MT-2 design generally include introduction of a laser source, a videographic speckle recording system, a digitizing board for the speckle recording signal, a stepper motor control module and redesigned micromechanics controllable by it, which via signals supplied by the computer (the nature of which is controlled by specially written software) alters the movement of the analytical head. As a result of the modification, the MT-2 with digital speckle recording, laser module, and microcamera allows us: to determine the transition to irreversible aggregation of the asphaltenes, characterized by their deposition on the walls of the measuring bath (after desorption of the resins); to do realtime classification of crude oil by speckle morphometry methods; to observe and identify the emulsion properties of the crude oil, including formation of “carpenter’s level” bubble inclusions and coacervate droplets; to carry out a rheological falling-drop experiment with thermographic monitoring; to make rheogoniometric observations while rotating the measuring instrument or thin cuvet; to observe wavy perturbations on the surface of the medium while the drop is falling, with delayed relaxation (dissipation) due to viscoelastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. V. Topchiev, ed., Composition and Properties of Crude Oils and Gasoline/Kerosene Fractions [in Russian], Izdat. Akad. Nauk SSSR, Moscow (1957). 521 pp.

    Google Scholar 

  2. S. R. Sergienko, High Molecular Weight Petroleum Compounds [in Russian], Gos. Nauch.-Tekh. Izdat. Neft. i Gorn.-Topl. Lit., Moscow (1959). 412 pp.

    Google Scholar 

  3. Yu. V. Pokonova, The Chemistry of High Molecular Weight Petroleum Compounds [in Russian], Izdat. Leningr. Univ., Leningrad (1980). 172 pp.

    Google Scholar 

  4. S. R. Sergienko, High Molecular Weight Non-Hydrocarbon Petroleum Compounds [in Russian], Nedra, Moscow (1964). 545 pp.

    Google Scholar 

  5. S. G. Agaev, N. S. Yakovlev, and S. V. Gultyaev, Russian Journal of Applied Chemistry, 80, 486-491 (2007).

    Article  CAS  Google Scholar 

  6. Y. V. Loskutova, I. V. Prozorova, N. V. Yudina et al., Journal of Engineering Physics and Thermophysics, 77, 1034-1039 (2004).

    Article  CAS  Google Scholar 

  7. M. M. F. Al-Jarrah and R. L. Apikian, Journal of Chemical Technology and Biotechnology, 39, 231-236 (1987).

    Article  CAS  Google Scholar 

  8. B. K. Sharma, C. D. Sharma, S. D. Bhagat et al., Petroleum Science and Technology, 25, 93-104 (2007).

    Article  CAS  Google Scholar 

  9. A. Guzman, A. Bueno, and L. Carbognani, Petroleum Science and Technology, 27, 801-816 (2009).

    Article  CAS  Google Scholar 

  10. S. Acevedo, L. B. Gutierrez, G. Negrin et al., Energy & Fuels, 19, 1548-1560 (2005).

    Article  CAS  Google Scholar 

  11. H. W. Yarranton, H. Alboudwarej, and R. Jakher, Ind. Eng. Chem. Res., 39, 2916-2924 (2000).

    Article  CAS  Google Scholar 

  12. S. G. Agaev, E. O. Zemlyanskii, A. N. Grebnev et al., Russian Journal of Applied Chemistry, 79, 1360-1364 (2006).

    Article  CAS  Google Scholar 

  13. E. O. Zemlyanskii, A. N. Grebnev, and S. V. Gul’tyaev, in: Oil and Gas in Western Siberia: Proceedings of the International Scientific and Technical Conference [in Russian], TyumGNGU, Tyumen (2005), Vol. 1, pp. 202-203.

    Google Scholar 

  14. O. V. Gradov, Mol. Vest., 3, 46-56 (2012).

    Google Scholar 

  15. O. V. Gradov, Vestnik Novykh Med. Tekhnologii, 20, 123-125 (2013).

    Google Scholar 

  16. V. I. Kirsanov, Author’s Abstract, Candidacy Dissertation, MVTU im. N. É. Baumana, Moscow (1986).

    Google Scholar 

  17. V. I. Kirsanov, Yu. G. Monin, and M. M. Sokolova, Fiziologicheskii Zhurnal, 12, 154-155 (1976).

    Google Scholar 

  18. O. V. Gradov, Mol. Vest., 2, 36-56 (2013).

    Google Scholar 

  19. K. E. Pankin, Y. V. Ivanova, R. I. Kuzmina et al., Chemistry and Technology of Fuels and Oils, 47, 112-115 (2011).

    Article  CAS  Google Scholar 

  20. Y. V. Maksimuk, A. F. Buglak, V. S. Kruk et al., Chemistry and Technology of Fuels and Oils, 49, 108-114 (2013).

    Article  CAS  Google Scholar 

  21. Russian Federation Patent 2208133.

  22. A. V. Notchenko and O. V. Gradov, Zhurnal Radioélektroniki, No. 1, 33 (2012).

  23. S. K. Saha and G. L. Dayanidhi, Heat and Mass Transfer, 48, No. 12, 2059-2068 (2012).

    Article  CAS  Google Scholar 

  24. A. V. Dement’ev, A. S. Medzhibovskii, G. G. Nemsadze et al., Chemistry and Technology of Fuels and Oils, 44, 425-429 (2008).

    Article  Google Scholar 

  25. Z. S. Salimov, A. S. Sultanov, S. A. Abdurakhimov et al., Chemistry and Technology of Fuels and Oils, 37, No. 6, 410-413 (2001).

    Article  CAS  Google Scholar 

  26. A. N. Dmitrievskii, V. I. Konov, I. A. Volodin et al., Doklady Earth Sciences, 437, 401-406 (2011).

    Article  CAS  Google Scholar 

  27. R. Edgeworth, B. J. Dalton, and T. Parnell, European Journal of Physics, 5, 198-200 (1984).

    Article  Google Scholar 

  28. I. Bamforth, Quadrant, 55, 64-65 (2011).

    Google Scholar 

  29. P.-J. Klijn, J. Ellenberger, and J. M. H. Fortuin, Rheologica Acta, 18, 303-307 (1979).

    Article  Google Scholar 

  30. C. S. Venkateswaran, Proc. Ind. Acad. Sci. Section A, 15, 362-370 (1942).

    Google Scholar 

Download references

We would like to express our thanks for the cooperation of colleagues in the Department of Metrology and Measuring Instruments, Vernadsky Institute of Geochemistry and Analytical Chemistry (Russian Academy of Sciences), at the facilities of which the first rebuild and redesign of the basic instrument was carried out. We would like to thank the designer O. V. Gradov for the opportunity to do the initial work on his videographic micro osmometer. Special thanks go to the developer of the MT-2, V. I. Kirsanov (formerly with Burevestnik NOP)] and the German service engineers and osmometer specialists, discussions with whom on analogous foreign instruments were useful in optimizing this design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zaitsev.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 48 – 52, January– February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, E.V. Application of Laser Videographic Cryoscopic Micro Osmometry in Measurements of Temperature Depression in Petroleum Products. Chem Technol Fuels Oils 51, 79–86 (2015). https://doi.org/10.1007/s10553-015-0577-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-015-0577-x

Key words

Navigation