Skip to main content
Log in

Viscous heating and heat transfer in cone-and-plate rheogoniometry

  • Original Contributions · Originalarbeiten
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

At higher shear rates the relation between shear stress and shear rate appears to deviate from the for Newtonian fluids expected linear behaviour. In cone-and-plate rheogoniometry one of the most important causes of that is the effect of viscous heating. Accurate measurements carried out with a 10 cm diameter cone and plate lead to a semi-logarithmic, linear relationship between temperature increase and time for a Newtonian oil which dynamic viscosity varies approximately linearly with time. A simple model based on a heat balance describes this behaviour quantitatively.

Zusammenfassung

Bei newtonschen Flüssigkeiten weisen die Experimente eine Abweichung vom linearen Zusammenhang zwischen Schubspannung und Schergeschwindigkeit auf. Im Kegel-Platte-Meßsystem ist die Wärmeproduktion durch innere Reibung die wichtigste Ursache der Abweichung. Bei newtonschen Flüssigkeiten, deren dynamische Viskosität sich ungefähr linear mit der Temperatur verändert, ergeben sorgfältig ausgeführte Messungen mit einem Kegel von 10 cm Durchmesser einen linearen Zusammenhang zwischen der Zeit und dem Logarithmus der Temperaturzunahme. Ein aus der Wärmebilanz abgeleitetes Modell vermag dieses Verhalten quantitativ zu beschreiben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

platen surface (m2)

B :

viscosity constant from eq. [1] (Pa s K−1)

S B :

standard deviation ofB (Pa s K−1)

S t0 :

standard deviation oft 0 (s)

S t′0 :

standard deviation oft′ 0 (s)

S η0 :

standard deviation ofη 0 (Pa s)

t :

time (s)

t 0 :

time def. by eq. [5] (s)

t′ 0 :

time def. by eq. [11] (s)

T :

temperature (°C)

T 0 :

temperature of the surrounding air (°C)

T :

highest experimental temperature (°C)

V :

volume of the fluid between the platen (m3)

W :

heat capacity of the system (J K−1)

α :

heat transfer coefficient (W m−2 K−1)

\(\dot \gamma \) :

shear rate (s−1)

η :

dynamic viscosity (Pa s)

η 0 :

dynamic viscosity atT 0 (Pa s)

θ :

dimensionless temperature def. by eq. [4a] (−)

τ :

dimensionless time def. by eq. [4b] (−)

τ′ :

dimensionless time def. by eq. [10] (−)

References

  1. Ellenberger, J., et al., J. Physics E., Sci. Instr.9, 763–765 (1976).

    Google Scholar 

  2. Bird et al., Transport Phenomena, J. Wiley & Sons Inc. (London 1960).

    Google Scholar 

  3. Welty et al., The Fundamentals of Momentum, Heat and Mass Transfer, J. Wiley & Sonc Inc. (London 1976).

    Google Scholar 

  4. Turian et al., Chem. Eng. Sci.18, 689–696 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klijn, P.J., Ellenberger, J. & Fortuin, J.M.H. Viscous heating and heat transfer in cone-and-plate rheogoniometry. Rheol Acta 18, 303–307 (1979). https://doi.org/10.1007/BF01542778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542778

Keywords

Navigation