Skip to main content

Advertisement

Log in

A CTL/M2 macrophage-related four-gene signature predicting metastasis-free survival in triple-negative breast cancer treated with adjuvant radiotherapy

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to develop and validate a prognostic model for metastasis-free survival (MFS) based on genes that may functionally interact with cytotoxic T lymphocytes (CTLs) and M2 macrophages in patients with triple-negative breast cancer (TNBC) who underwent adjuvant radiotherapy.

Methods

The transcriptional and phenotypic profiles of TNBC and other breast cancer subtypes were downloaded from gene expression omnibus (GEO). The abundance of infiltrated immune cells was evaluated through CIBERSORTx or MCP-counter. A weighted linear model, the score for MFS (SMFS), was developed using the least absolute shrinkage and selection operator (LASSO) in GSE58812 and validated in GSE2034 and GSE12276. The biological implication of the SMFS was explored by evaluating its associations with TNBC molecular subtypes and other radiosensitivity- or immune-related signatures.

Results

A model consisting of the PCDH12/ELP3, PCDH12/MSRA, and FAM160B2/MSRA gene expression ratios with non-zero coefficients finally selected by LASSO was developed using GSE58812. In GSE2034 (treatment with adjuvant radiotherapy), the SMFS was significantly associated with MFS in TNBC patients (hazard ratio (HR) = 8.767, 95% confidence interval (CI) 1.856–41.408, P = 0.006) and, to a lesser extent, in non-TNBC patients (HR = 2.888, 95% CI 1.076–7.750, P = 0.035). However, the interaction of subtype (TNBC vs non-TNBC) and the SMFS tended to be significant (Pinteraction = 0.081). In contrast, the SMFS was not significantly associated with MFS in either TNBC patients (P = 0.499) or non-TNBC patients (P = 0.536) in GSE12276 (treatment without radiotherapy). Among the four TNBC molecular subtypes, the c1 and c4 subtypes exhibited higher CTL infiltration and lower SMFS values than the c2 and c3 subtypes. In addition, the SMFS was positively correlated with the abundance of endothelial cells (r = 0.413, P < 0.001).

Conclusion

The proposed model has the potential to predict MFS in TNBC patients after adjuvant radiotherapy, and the SMFS may represent a measurement of tumor immune suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysis during the current study are available from the corresponding author on reasonable request.

Code availability

Not available.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA-Cancer J Clin 66(2):115–132

    Article  Google Scholar 

  3. Yin L, Duan J, Bian X, Yu S (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer RES. https://doi.org/10.1186/s13058-020-01296-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin NU, Claus E, Sohl J, Razzak AR, Arnaout A, Winer EP (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer high incidence of central nervous system metastases. Cancer Am Cancer Soc 113(10):2638–2645

    Google Scholar 

  5. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(151):4429–4434

    Article  Google Scholar 

  6. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A, Giordano SH et al (2017) NCCN Guidelines (R) Insights Breast Cancer, Version 1.2017 featured updates to the NCCN guidelines. J Natl Compr Canc Netw 15(4):433

    Article  Google Scholar 

  7. Sjostrom M, Chang SL, Fishbane N, Davicioni E, Zhao SG, Hartman L, Holmberg E, Feng FY, Speers CW, Pierce LJ et al (2019) Clinicogenomic radiotherapy classifier predicting the need for intensified locoregional treatment after breast-conserving surgery for early-stage breast cancer. J Clin Oncol 37(35):3340

    Article  Google Scholar 

  8. Sjostrom M, Staaf J, Eden P, Warnberg F, Bergh J, Malmstrom P, Ferno M, Nimeus E, Fredriksson I (2018) Identification and validation of single-sample breast cancer radiosensitivity gene expression predictors. Breast Cancer Res. https://doi.org/10.1186/s13058-018-0978-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Speers C, Zhao S, Liu M, Bartelink H, Pierce LJ, Feng FY (2015) Development and validation of a novel radiosensitivity signature in human breast cancer. Clin Cancer Res 21(16):3667–3677

    Article  CAS  Google Scholar 

  10. Denkert C, Liedtke C, Tutt A, von Minckwitz G (2017) Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 389(10087):2430–2442

    Article  CAS  Google Scholar 

  11. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  12. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, McLellan MD, Uzunangelov V et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158(4):929–944

    Article  CAS  Google Scholar 

  13. Miyan M, Schmidt-Mende J, Kiessling R, Poschke I, de Boniface J (2016) Differential tumor infiltration by T-cells characterizes intrinsic molecular subtypes in breast cancer. J Transl Med. https://doi.org/10.1186/s12967-016-0983-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, Rees M, Ramaswamy A, Muenst S, Soysa SD et al (2019) A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177(5):1330

    Article  CAS  Google Scholar 

  15. Cui Y, Li B, Pollom EL, Horst KC, Li R (2018) integrating radiosensitivity and immune gene signatures for predicting benefit of radiotherapy in breast cancer. Clin Cancer Res 24(19):4754–4762

    Article  Google Scholar 

  16. Kovacs A, Tullberg AS, Ronnerman EW, Holmberg E, Hartman L, Sjostrom M, Lundstedt D, Malmstrom P, Ferno M, Karlsson P (2019) Effect of radiotherapy after breast-conserving surgery depending on the presence of tumor-infiltrating lymphocytes: a long-term follow-up of the SweBCG91RT randomized trial. J Clin Oncol 37(14):1179

    Article  CAS  Google Scholar 

  17. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B et al (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24(10):1550

    Article  CAS  Google Scholar 

  18. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heider A, Alt R (2013) virtualArray: a R/bioconductor package to merge raw data from different microarray platforms. BMC Bioinform. https://doi.org/10.1186/1471-2105-14-75

    Article  Google Scholar 

  20. Becker N, Werft W, Toedt G, Lichter P, Benner A (2009) penalizedSVM: a R-package for feature selection SVM classification. Bioinformatics 25(13):1711–1712

    Article  CAS  Google Scholar 

  21. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235

    Article  Google Scholar 

  22. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautes-Fridman C, Fridman WH et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. https://doi.org/10.1186/s13059-016-1113-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37(7):773

    Article  CAS  Google Scholar 

  24. Xu T, Thuc DL, Liu L, Su N, Wang R, Sun B, Colaprico A, Bontempi G, Li J (2017) CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics 33(19):3131–3133

    Article  CAS  Google Scholar 

  25. Yu G, Wang L, Han Y, He Q (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5):284–287

    Article  CAS  Google Scholar 

  26. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940

    Article  Google Scholar 

  27. Torres-Roca JF, Fulp WJ, Caudell JJ, Servant N, Bollet MA, van de Vijver M, Naghavi AO, Harris EE, Eschrich SA (2015) Integration of a radiosensitivity molecular signature into the assessment of local recurrence risk in breast cancer. Int J Radiat Oncol 93(3):631–638

    Article  Google Scholar 

  28. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  Google Scholar 

  29. Hoshida Y (2010) Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PLoS ONE. https://doi.org/10.1371/journal.pone.0015543

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burstein MD, Tsimelzon A, Poage GM, Coyington KR, Contreras A, Fuqua SAW, Sayage MI, Osborne CK, Hilsenbeck SG, Chang JC et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698

    Article  CAS  Google Scholar 

  31. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ et al (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24(10):1545

    Article  CAS  Google Scholar 

  32. Eschrich S, Zhang H, Zhao H, Boulware D, Lee J, Bloom G, Torres-Roca JF (2009) Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol 75(2):497–505

    Article  CAS  Google Scholar 

  33. Strom T, Harrison LB, Giuliano AR, Schell MJ, Eschrich SA, Berglund A, Fulp W, Thapa R, Coppola D, Kim S et al (2017) Tumour radiosensitivity is associated with immune activation in solid tumours. Eur J Cancer 84:304–314

    Article  CAS  Google Scholar 

  34. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo W, Lapuk A, Neve RM, Qian Z, Ryder T et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541

    Article  CAS  Google Scholar 

  35. Hou Y, Liang HL, Yu X, Liu Z, Cao X, Rao E, Huang X, Wang L, Li L, Bugno J et al (2021) Radiotherapy and immunotherapy converge on elimination of tumor-promoting erythroid progenitor cells through adaptive immunity. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abb0130

    Article  PubMed  Google Scholar 

  36. Weichselbaum RR, Liang H, Deng L, Fu Y (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14(6):365–379

    Article  CAS  Google Scholar 

  37. Hou Y, Liang H, Rao E, Zheng W, Huang X, Deng L, Zhang Y, Yu X, Xu M, Mauceri H et al (2018) Non-canonical NF-kappa B Antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49(3):490

    Article  CAS  Google Scholar 

  38. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu Y (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J clin invest 124(2):687–695

    Article  CAS  Google Scholar 

  39. McLaughlin M, Patin EC, Pedersen M, Wilkins A, Dillon MT, Melcher AA, Harrington KJ (2020) Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat Rev Cancer 20(4):203–217

    Article  CAS  Google Scholar 

  40. Early Breast Cancer Trialists’ Collaborative Group (1995) Effects of radiotherapy and surgery in early breast cancer: An overview of the randomized trials. N Engl J Med 333(22):1444–1455

    Article  Google Scholar 

  41. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, Lin NU, Litiere S, Dancey J, Chen A et al (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18(3):E143–E152

    Article  Google Scholar 

  42. Wang Q, Li P, Wu W (2019) A systematic analysis of immune genes and overall survival in cancer patients. BMC Cancer. https://doi.org/10.1186/s12885-019-6414-6

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kitamura T, Qian B, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86

    Article  CAS  Google Scholar 

  44. Ren B, Cui M, Yang G, Wang H, Feng M, You L, Zhao Y (2018) Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. https://doi.org/10.1186/s12943-018-0858-1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ho AY, Barker CA, Arnold BB, Powell SN, Hu ZI, Gucalp A, Lebron-Zapata L, Wen HY, Kallman C, D’Agnolo A et al (2020) A phase 2 clinical trialassessing theefficacy and safety of pembrolizumab and radiotherapy in patients with metastatic triple-negative breast cancer. Cancer-Am Cancer Soc 126(4):850–860

    CAS  Google Scholar 

  46. Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwe H, Pircher A, Van den Eynde K et al (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24(8):1277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Lei Lin from the Radiotherapy Center of Daping Hospital for her assistance in clinical radiotherapy-related issues for breast cancer. This research was partially supported by the National Natural Science Foundation of China (81802292).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: YY, HX, and DW; development of methodology: YY, HX, and DW; acquisition of data: JM, QZ, and KX; analysis and interpretation of data: YY, HX, and DW; writing, review, and/or revision of the manuscript: YY, JM, QZ, KX, ZZ, CC, HX, and DW; study supervision: YY, HX, and DW.

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the public raw datasets used in this study have been approved by the Ethics Committees at the corresponding institutions.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Ma, J., Zhang, Q. et al. A CTL/M2 macrophage-related four-gene signature predicting metastasis-free survival in triple-negative breast cancer treated with adjuvant radiotherapy. Breast Cancer Res Treat 190, 329–341 (2021). https://doi.org/10.1007/s10549-021-06379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06379-1

Keywords

Navigation