Skip to main content

Advertisement

Log in

The histopathological and molecular features of breast carcinoma with tumour budding—a systematic review and meta-analysis

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Tumour budding (TB) is an adverse histological feature in many epithelial cancers. It is thought to represent epithelial–mesenchymal transition, a key step in the metastatic process. The significance of TB in breast carcinoma (BC) remains unclear. The aim of this study is to investigate the relationship between TB and other histological and molecular features of BC.

Methods

A systematic search was performed to identify studies that compared features of BC based on the presence or absence of high-grade TB. Dichotomous variables were pooled as odds ratios (OR) using the Der Simonian–Laird method. Quality assessment of the included studies was performed using the Newcastle–Ottawa scale (NOS).

Results

Seven studies with a total of 1040 patients (high-grade TB n = 519, 49.9%; low-grade/absent TB n = 521, 50.1%) were included. A moderate to high risk of bias was noted. The median NOS was 7 (range 6–8). High-grade TB was significantly associated with lymph node metastasis (OR 2.32, 95% c.i. 1.77 to 3.03, P < 0.001) and lymphovascular invasion (OR 3.08, 95% c.i. 2.13 to 4.47, P < 0.001). With regard to molecular subtypes, there was an increased likelihood of high-grade TB in oestrogen (OR 1.66, 95% c.i. 1.21 to 2.29, P = 0.002) and progesterone receptor-positive (OR 1.48, 95% c.i. 1.09 to 2.02, P = 0.01) tumours. In contrast, triple-negative breast cancer had a reduced incidence of high-grade TB (OR 0.46, 95% c.i. 0.30 to 0.72, P = 0.0006).

Conclusion

High-grade TB is enriched in hormone receptor-positive BC and is associated with known adverse prognostic variables. TB may offer new insights into the metastatic process of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD (2019) Jemal A (2019) Cancer statistics. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  2. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  3. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. https://doi.org/10.1073/pnas.191367098

    Article  PubMed  Google Scholar 

  4. Sims AH, Howell A, Howell SJ, Clarke RB (2007) Origins of breast cancer subtypes and therapeutic implications. Nat Clin Pract Oncol 4(9):516–525. https://doi.org/10.1038/ncponc0908

    Article  CAS  PubMed  Google Scholar 

  5. van de Vijver MJ, van't HeVeer YDLJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009. https://doi.org/10.1056/NEJMoa021967

    Article  Google Scholar 

  6. Gujam FJA, McMillan DC, Mohammed ZMA, Edwards J, Going JJ (2015) The relationship between tumour budding, the tumour microenvironment and survival in patients with invasive ductal breast cancer. Br J Cancer 113(7):1066–1074. https://doi.org/10.1038/bjc.2015.287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salhia B, Trippel M, Pfaltz K, Cihoric N, Grogg A, Lädrach C, Zlobec I, Tapia C (2015) High tumor budding stratifies breast cancer with metastatic properties. Breast Cancer Res Treat 150(2):363–371. https://doi.org/10.1007/s10549-015-3333-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogers AC, Winter DC, Heeney A, Gibbons D, Lugli A, Puppa G, Sheahan K (2016) Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer. Br J Cancer 115(7):831–840. https://doi.org/10.1038/bjc.2016.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koike M, Kodera Y, Itoh Y, Nakayama G, Fujiwara M, Hamajima N, Nakao A (2008) Multivariate analysis of the pathologic features of esophageal squamous cell cancer: tumor budding is a significant independent prognostic factor. Ann Surg Oncol 15(7):1977–1982. https://doi.org/10.1245/s10434-008-9901-6

    Article  PubMed  Google Scholar 

  10. Roh MS, Lee JI, Choi PJ (2004) Tumor budding as a useful prognostic marker in esophageal squamous cell carcinoma. Dis Esophagus 17(4):333–337. https://doi.org/10.1111/j.1442-2050.2004.00436.x

    Article  CAS  PubMed  Google Scholar 

  11. Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC (2002) Tumour 'budding' as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40(2):127–132. https://doi.org/10.1046/j.1365-2559.2002.01324.x

    Article  CAS  PubMed  Google Scholar 

  12. Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, El Zimaity H, Fléjou JF, Hansen TP, Hartmann A, Kakar S, Langner C, Nagtegaal I, Puppa G, Riddell R, Ristimäki A, Sheahan K, Smyrk T, Sugihara K, Terris B, Ueno H, Vieth M, Zlobec I, Quirke P (2017) Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol 30(9):1299–1311. https://doi.org/10.1038/modpathol.2017.46

    Article  PubMed  Google Scholar 

  13. Zlobec I, Lugli A (2010) Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget 1(7):651–661. https://doi.org/10.18632/oncotarget.199

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012

    Article  CAS  Google Scholar 

  16. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thürlimann B, Senn HJ, members P (2009) Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20(8):1319–1329. https://doi.org/10.1093/annonc/mdp322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  18. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  19. Sun Y, Liang F, Cao W, Wang K, He J, Wang H, Wang Y (2014) Prognostic value of poorly differentiated clusters in invasive breast cancer. World Journal of Surgical Oncology. https://doi.org/10.1186/1477-7819-12-310

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sriwidyani NP, Manuaba IBTW, Alit-Artha IG, Mantik-Astawa IN (2016) Tumor budding in breast carcinoma: relation to E-Cadherin, MMP-9 expression, and metastasis risk. J Br Cancer 5(3):5. https://doi.org/10.15562/bmj.v5i3.335

    Article  Google Scholar 

  21. Li X, Wei B, Sonmez C, Li Z, Peng L (2017) High tumor budding count is associated with adverse clinicopathologic features and poor prognosis in breast carcinoma. Hum Pathol 66:222–229. https://doi.org/10.1016/j.humpath.2017.06.008

    Article  PubMed  Google Scholar 

  22. Masilamani SKP (2019) Evaluation of clinicopathologic significance of tumor budding in breast carcinoma. Inter J of Clin Diagnostic Pathol 2(1):171–173. https://doi.org/10.33545/pathol.2019.v2.i1c.25

    Article  Google Scholar 

  23. Liang F, Cao W, Wang Y, Li L, Zhang G, Wang Z (2013) The prognostic value of tumor budding in invasive breast cancer. Pathol Res Pract 209(5):269–275. https://doi.org/10.1016/j.prp.2013.01.009

    Article  PubMed  Google Scholar 

  24. Agarwal R, Khurana N, Singh T, Agarwal P (2019) Tumor budding in infiltrating breast carcinoma: Correlation with known clinicopathological parameters and hormone receptor status. Indian J Pathol Microbiol 62(2):222–225. https://doi.org/10.4103/IJPM.IJPM_120_18

    Article  PubMed  Google Scholar 

  25. Renuka MK IV, Premalatha PKP, Vaishnavi R (2019) Tumor budding in invasive carcinoma of breast of No Special Type (NST): Value as a prognostic factor. J Diagn Pathol Oncol 4(2):125–129. https://doi.org/10.18231/j.jdpo.2019.024

    Article  Google Scholar 

  26. Gabal SM, Bassam AM, Sedqi ME, Rasha MA (2018) Tumour budding and MMP-2 expression in breast invasive ductal carcinoma. J Clin Diagnostic Res 12(5):EC25–EC29. https://doi.org/10.7860/JCDR/2018/34941.11540

    Article  CAS  Google Scholar 

  27. Cho ES, Kang HE, Kim NH, Yook JI (2019) Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res 42(1):14–24. https://doi.org/10.1007/s12272-018-01108-7

    Article  CAS  PubMed  Google Scholar 

  28. Bouris P, Skandalis SS, Piperigkou Z, Afratis N, Karamanou K, Aletras AJ, Moustakas A, Theocharis AD, Karamanos NK (2015) Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 43:42–60. https://doi.org/10.1016/j.matbio.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez-Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A (2010) ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 29(24):3490–3500. https://doi.org/10.1038/onc.2010.102

    Article  CAS  PubMed  Google Scholar 

  30. Rukstalis JM, Habener JF (2007) Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr Patterns 7(4):471–479. https://doi.org/10.1016/j.modgep.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  31. Zuo L, Li W, You S (2010) Progesterone reverses the mesenchymal phenotypes of basal phenotype breast cancer cells via a membrane progesterone receptor mediated pathway. Breast Cancer Res 12(3):R34–R34. https://doi.org/10.1186/bcr2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boland MR, Ryan EJ, Dunne E, Aherne TM, Bhatt NR, Lowery AJ (2019) Meta-analysis of the impact of progesterone receptor status on oncological outcomes in oestrogen receptor-positive breast cancer. Br J Surg. https://doi.org/10.1002/bjs.11347

    Article  PubMed  Google Scholar 

  33. Petruolo OA, Pilewskie M, Patil S, Barrio AV, Stempel M, Wen HY, Morrow M (2017) Standard Pathologic Features Can Be Used to Identify a Subset of Estrogen Receptor-Positive, HER2 Negative Patients Likely to Benefit from Neoadjuvant Chemotherapy. Ann Surg Oncol 24(9):2556–2562. https://doi.org/10.1245/s10434-017-5898-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. D'Antonio A, Caputo A (2019) Expanding the scope of tumor budding. Indian J Pathol Microbiol 62(2):195–196. https://doi.org/10.4103/IJPM.IJPM_151_19

    Article  PubMed  Google Scholar 

  35. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W, Donowitz M, Tsichlis PN, Larue L (2003) The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Can Res 63(9):2172–2178

    CAS  Google Scholar 

  36. Peinado H, Portillo F, Cano A (2004) Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48(5–6):365–375. https://doi.org/10.1387/ijdb.041794hp

    Article  CAS  PubMed  Google Scholar 

  37. Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Srovnal J, Hajduch M, Murray P, Kolar Z (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55. https://doi.org/10.1186/1471-2407-7-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Man YG, Izadjoo M, Song G, Stojadinovic A (2011) In situ malignant transformation and progenitor-mediated cell budding: Two different pathways for breast ductal and lobular tumor invasion. Journal of Cancer 2(1):401–412. https://doi.org/10.7150/jca.2.401

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferrari-Amorotti G, Chiodoni C, Shen F, Cattelani S, Soliera AR, Manzotti G, Grisendi G, Dominici M, Rivasi F, Colombo MP, Fatatis A, Calabretta B (2014) Suppression of invasion and metastasis of triple-negative breast cancer lines by pharmacological or genetic inhibition of slug activity. Neoplasia 16(12):1047–1058. https://doi.org/10.1016/j.neo.2014.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leo C, Cotic C, Pomp V, Fink D, Varga Z (2018) Overexpression of Lox in triple-negative breast cancer. Ann Diagn Pathol 34:98–102. https://doi.org/10.1016/j.anndiagpath.2018.03.009

    Article  PubMed  Google Scholar 

  41. Johansson J, Tabor V, Wikell A, Jalkanen S, Fuxe J (2015) TGF-β1-Induced Epithelial-Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells. Front Oncol 5:3. https://doi.org/10.3389/fonc.2015.00003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS, Nelson CM, Jakobsson L, Betsholtz C, Sund M, Karlsson MC, Fuxe J (2016) TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 35(6):748–760. https://doi.org/10.1038/onc.2015.133

    Article  CAS  PubMed  Google Scholar 

  43. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, Quinn E, Dunbier A, Baum M, Buzdar A, Howell A, Bugarini R, Baehner FL, Shak S (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834. https://doi.org/10.1200/JCO.2009.24.4798

    Article  PubMed  Google Scholar 

  44. Cronin M, Sangli C, Liu ML, Pho M, Dutta D, Nguyen A, Jeong J, Wu J, Langone KC, Watson D (2007) Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem 53(6):1084–1091. https://doi.org/10.1373/clinchem.2006.076497

    Article  CAS  PubMed  Google Scholar 

  45. Naghshvar F, Torabizadeh Z, Yazdani Charati J, Akbarnezhad M (2017) Relationship between MMP-11 Expression in Invasive Ductal Breast Carcinoma with its Clinicopathologic Parameters. Middle East Journal of Cancer 8(2):69–75

    CAS  Google Scholar 

  46. Ahmad A, Hanby A, Dublin E, Poulsom R, Smith P, Barnes D, Rubens R, Anglard P, Hart I (1998) Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 152(3):721–728

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800. https://doi.org/10.1056/NEJMra0801289

    Article  CAS  PubMed  Google Scholar 

  48. van Staalduinen J, Baker D, Ten Dijke P, van Dam H (2018) Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 37(48):6195–6211. https://doi.org/10.1038/s41388-018-0378-x

    Article  CAS  PubMed  Google Scholar 

  49. Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S (2019) Circulating Tumor Cells with Stemness and Epithelial-to-Mesenchymal Transition Features Are Chemoresistant and Predictive of Poor Outcome in Metastatic Breast Cancer. Mol Cancer Ther 18(2):437–447. https://doi.org/10.1158/1535-7163.MCT-18-0584

    Article  CAS  PubMed  Google Scholar 

  50. Bhangu A, Wood G, Brown G, Darzi A, Tekkis P, Goldin R (2014) The role of epithelial mesenchymal transition and resistance to neoadjuvant therapy in locally advanced rectal cancer. Colorectal Dis 16(4):O133–143. https://doi.org/10.1111/codi.12482

    Article  CAS  PubMed  Google Scholar 

  51. Rogers AC, Gibbons D, Hanly AM, Hyland JM, O'Connell PR, Winter DC, Sheahan K (2014) Prognostic significance of tumor budding in rectal cancer biopsies before neoadjuvant therapy. Mod Pathol 27(1):156–162. https://doi.org/10.1038/modpathol.2013.124

    Article  PubMed  Google Scholar 

  52. Sannier A, Lefèvre JH, Panis Y, Cazals-Hatem D, Bedossa P, Guedj N (2014) Pathological prognostic factors in locally advanced rectal carcinoma after neoadjuvant radiochemotherapy: analysis of 113 cases. Histopathology 65(5):623–630. https://doi.org/10.1111/his.12432

    Article  PubMed  Google Scholar 

  53. Carey LA, Winer EP (2014) Defining success in neoadjuvant breast cancer trials. Lancet 384(9938):115–116. https://doi.org/10.1016/S0140-6736(14)60034-9

    Article  PubMed  Google Scholar 

  54. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE, Pazdur R, Ditsch N, Rastogi P, Eiermann W, von Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

    Article  PubMed  Google Scholar 

  55. Mieog JS, van der Hage JA, van de Velde CJ (2007) Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005002.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bosch SL, Teerenstra S, de Wilt JH, Cunningham C, Nagtegaal ID (2013) Predicting lymph node metastasis in pT1 colorectal cancer: a systematic review of risk factors providing rationale for therapy decisions. Endoscopy 45(10):827–834. https://doi.org/10.1055/s-0033-1344238

    Article  PubMed  Google Scholar 

  57. De Smedt L, Palmans S, Sagaert X (2016) Tumour budding in colorectal cancer: what do we know and what can we do? Virchows Arch 468(4):397–408. https://doi.org/10.1007/s00428-015-1886-5

    Article  PubMed  Google Scholar 

  58. Mitrovic B, Schaeffer DF, Riddell RH, Kirsch R (2012) Tumor budding in colorectal carcinoma: time to take notice. Mod Pathol 25(10):1315–1325. https://doi.org/10.1038/modpathol.2012.94

    Article  CAS  PubMed  Google Scholar 

  59. van Wyk HC, Park J, Roxburgh C, Horgan P, Foulis A, McMillan DC (2015) The role of tumour budding in predicting survival in patients with primary operable colorectal cancer: a systematic review. Cancer Treat Rev 41(2):151–159. https://doi.org/10.1016/j.ctrv.2014.12.007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus J. Lloyd.

Ethics declarations

Conflicts of interest

The authors have no external funding or conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. This review was prospectively registered with PROSPERO (CRD 42019148045) and was performed in accordance with the guidelines for reporting items in systematic reviews and meta-analyses recommended by the PRISMA and MOOSE statements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, A.J., Ryan, É.J., Boland, M.R. et al. The histopathological and molecular features of breast carcinoma with tumour budding—a systematic review and meta-analysis. Breast Cancer Res Treat 183, 503–514 (2020). https://doi.org/10.1007/s10549-020-05810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05810-3

Keywords

Navigation