Skip to main content

Advertisement

Log in

Tumour budding in colorectal cancer: what do we know and what can we do?

  • Review and Perspectives
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Budding is a process during which individual or small clusters of up to five tumour cells detach from the main tumour mass and invade into the surrounding stroma. In colorectal cancer, this feature is observed in 20–40 % of cases and is associated with lymphovascular invasion, lymph node and distant metastases, and poor prognosis. A variety of scoring systems for budding have been proposed but so far a gold standard is lacking, hampering implementation of a budding score in guidelines for pathological examination of colorectal cancer. Furthermore, little is known about the mechanisms which cause tumour cells to detach from the main tumour mass and obtain increased invasive potential. In this review, we present an overview of tumour budding including its definition, scoring systems, prognostic relevance and biological mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Imai T (1954) The growth of human carcinoma. A morphological analysis. Fukuoka Igaku Zasshi 45:13–43

    Google Scholar 

  2. Morodomi T, Isomoto H, Shirouzu K, Kakegawa K, Irie K, Morimatsu M (1989) An index for estimating the probability of lymph node metastasis in rectal cancers. Lymph node metastasis and the histopathology of actively invasive regions of cancer. Cancer 63:539–543

    Article  CAS  PubMed  Google Scholar 

  3. Hase K, Shatney C, Johnson D, Trollope M, Vierra M (1993) Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum 36:627–635

    Article  CAS  PubMed  Google Scholar 

  4. Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC (2002) Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40:127–132

    Article  CAS  PubMed  Google Scholar 

  5. Prall F, Nizze H, Barten M (2005) Tumour budding as prognostic factor in stage I/II colorectal carcinoma. Histopathology 47:17–24

    Article  CAS  PubMed  Google Scholar 

  6. Caie PD, Turnbull AK, Farrington SM, Oniscu A, Harrison DJ (2014) Quantification of tumour budding, lymphatic vessel density and invasion through image analysis in colorectal cancer. J Transl Med 12:156

    Article  PubMed  PubMed Central  Google Scholar 

  7. Puppa G, Senore C, Sheahan K, Vieth M, Lugli A, Zlobec I, Pecori S, Wang LM, Langner C, Mitomi H, et al. (2012) Diagnostic reproducibility of tumour budding in colorectal cancer: a multicentre, multinational study using virtual microscopy. Histopathology 61:562–575

    PubMed  Google Scholar 

  8. Karamitopoulou E, Zlobec I, Kölzer V, Kondi-Pafiti A, Patsouris ES, Gennatas K, Lugli A (2013) Proposal for a 10-high-power-fields scoring method for the assessment of tumor budding in colorectal cancer. Mod Pathol 26:295–301

    Article  CAS  PubMed  Google Scholar 

  9. Lugli A, Karamitopoulou E, Zlobec I (2012) Tumour budding: a promising parameter in colorectal cancer. Br J Cancer 106:1713–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koelzer VH, Zlobec I, Berger MD, Cathomas G, Dawson H, Dirschmid K, Hädrich M, Inderbitzin D, Offner F, Puppa G, et al. (2015) Tumor budding in colorectal cancer revisited: results of a multicenter interobserver study. Virchows Arch 466:485–493

    Article  CAS  PubMed  Google Scholar 

  11. Choi DH, Sohn DK, Chang HJ, Lim SB, Choi HS, Jeong SY (2009) Indications for subsequent surgery after endoscopic resection of submucosally invasive colorectal carcinomas: a prospective cohort study. Dis Colon Rectum 52:438–445

    Article  PubMed  Google Scholar 

  12. Yamauchi H, Togashi K, Kawamura YJ, Horie H, Sasaki J, Tsujinaka S, Yasuda Y, Konishi F (2008) Pathological predictors for lymph node metastasis in T1 colorectal cancer. Surg Today 38:905–910

    Article  PubMed  Google Scholar 

  13. Losi L, Ponti G, Gregorio CD, Marino M, Rossi G, Pedroni M, Benatti P, Roncucci L, de Leon MP (2006) Prognostic significance of histological features and biological parameters in stage I (pT1 and pT2) colorectal adenocarcinoma. Pathol Res Pract 202:663–670

    Article  PubMed  Google Scholar 

  14. Wang HS, Liang WY, Lin TC, Chen WS, Jiang JK, Yang SH, Chang SC, Lin JK (2005) Curative resection of T1 colorectal carcinoma: risk of lymph node metastasis and long-term prognosis. Dis Colon Rectum 48:1182–1192

    Article  PubMed  Google Scholar 

  15. Okuyama T, Nakamura T, Yamaguchi M (2003) Budding is useful to select high-risk patients in stage II well-differentiated or moderately differentiated colon adenocarcinoma. Dis Colon Rectum 46:1400–1406

    Article  PubMed  Google Scholar 

  16. Nakamura T, Mitomi H, Kanazawa H, Ohkura Y, Watanabe M (2008) Tumor budding as an index to identify high-risk patients with stage II colon cancer. Dis Colon Rectum 51:568–572

    Article  PubMed  Google Scholar 

  17. Tanaka M, Hashiguchi Y, Ueno H, Hase K, Mochizuki H (2003) Tumor budding at the invasive margin can predict patients at high risk of recurrence after curative surgery for stage II, T3 colon cancer. Dis Colon Rectum 46:1054–1059

    Article  PubMed  Google Scholar 

  18. Betge J, Kornprat P, Pollheimer MJ, Lindtner RA, Schlemmer A, Rehak P, Vieth M, Langner C (2012) Tumor budding is an independent predictor of outcome in AJCC/UICC stage II colorectal cancer. Ann Surg Oncol 19:3706–3712

    Article  PubMed  Google Scholar 

  19. Sy J, Fung CL, Dent OF, Chapuis PH, Bokey L, Chan C (2010) Tumor budding and survival after potentially curative resection of node-positive colon cancer. Dis Colon Rectum 53:301–307

    Article  PubMed  Google Scholar 

  20. Graham RP, Vierkant RA, Tillmans LS, Wang AH, Laird PW, Weisenberger DJ, Lynch CF, French AJ, Slager SL, Raissian Y, et al. (2015) Tumor budding in colorectal carcinoma: confirmation of prognostic significance and histologic cutoff in a population-based cohort. Am J Surg Pathol 39:1340–1346

    Article  PubMed  Google Scholar 

  21. Horcic M, Koelzer VH, Karamitopoulou E, Terracciano L, Puppa G, Zlobec I, Lugli A (2013) Tumor budding score based on 10 high-power fields is a promising basis for a standardized prognostic scoring system in stage II colorectal cancer. Hum Pathol 44:697–705

    Article  PubMed  Google Scholar 

  22. Park KJ, Choi HJ, Roh MS, Kwon HC, Kim C (2005) Intensity of tumor budding and its prognostic implications in invasive colon carcinoma. Dis Colon Rectum 48:1597–1602

    Article  PubMed  Google Scholar 

  23. Ha SS, Choi HJ, Park KJ, Kim JM, Kim SH, Roh YH, Kwon HC, Roh MS (2005) Intensity of tumor budding as an index for the malignant potential in invasive rectal carcinoma. Cancer Res Treat 37:177–182

    Article  PubMed  PubMed Central  Google Scholar 

  24. Langner C, Harbaum L, Pollheimer MJ, Kornprat P, Lindtner RA, Schlemmer A, Vieth M, Rehak P (2012) Mucinous differentiation in colorectal cancer—indicator of poor prognosis? Histopathology 60:1060–1072

    Article  PubMed  Google Scholar 

  25. Ohtsuki K, Koyama F, Tamura T, Enomoto Y, Fujii H, Mukogawa T, Nakagawa T, Uchimoto K, Nakamura S, Nonomura A, Nakajima Y (2008) Prognostic value of immunohistochemical analysis of tumor budding in colorectal carcinoma. Anticancer Res 28:1831–1836

    PubMed  Google Scholar 

  26. Wöhlke M, Schiffmann L, Prall F (2011) Aggressive colorectal carcinoma phenotypes of invasion can be assessed reproducibly and effectively predict poor survival: interobserver study and multivariate survival analysis of a prospectively collected series of 299 patients after potentially curative resections with long-term follow-up. Histopathology 59:857–866

    Article  PubMed  Google Scholar 

  27. Zlobec I, Hädrich M, Dawson H, Koelzer VH, Borner M, Mallaev M, Schnüriger B, Inderbitzin D, Lugli A (2014) Intratumoural budding (ITB) in preoperative biopsies predicts the presence of lymph node and distant metastases in colon and rectal cancer patients. Br J Cancer 110:1008–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu H, Zhang X, Li J, Sun B, Qian H, Yin Z (2015) The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells. J Cancer Res Clin Oncol 141:189–201

    Article  CAS  PubMed  Google Scholar 

  29. Peng Z, Wang CX, Fang EH, Wang GB, Tong Q (2014) Role of epithelial-mesenchymal transition in gastric cancer initiation and progression. World J Gastroenterol 20:5403–5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zlobec I, Lugli A, Baker K, Roth S, Minoo P, Hayashi S, Terracciano L, Jass JR (2007) Role of APAF-1, E-cadherin and peritumoral lymphocytic infiltration in tumour budding in colorectal cancer. J Pathol 212:260–268

    Article  CAS  PubMed  Google Scholar 

  33. Talbot LJ, Bhattacharya SD, Kuo PC (2012) Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int J Biochem Mol Biol 3:117–136

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zlobec I, Lugli A (2010) Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget 1:651–661

    Article  PubMed  PubMed Central  Google Scholar 

  35. García-Solano J, Conesa-Zamora P, Trujillo-Santos J, Torres-Moreno D, Mäkinen MJ, Pérez-Guillermo M (2012) Immunohistochemical expression profile of β-catenin, E-cadherin, P-cadherin, laminin-5γ2 chain, and SMAD4 in colorectal serrated adenocarcinoma. Hum Pathol 43:1094–1102

    Article  PubMed  Google Scholar 

  36. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98:10356–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roca F, Mauro LV, Morandi A, Bonadeo F, Vaccaro C, Quintana GO, Specterman S, de Kier Joffé EB, Pallotta MG, Puricelli LI, Lastiri J (2006) Prognostic value of E-cadherin, beta-catenin, MMPs (7 and 9), and TIMPs (1 and 2) in patients with colorectal carcinoma. J Surg Oncol 93:151–160

    Article  CAS  PubMed  Google Scholar 

  38. Pyke C, Salo S, Ralfkiaer E, Rømer J, Danø K, Tryggvason K (1995) Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55:4132–4139

    CAS  PubMed  Google Scholar 

  39. Guzińska-Ustymowicz K (2006) MMP-9 and cathepsin B expression in tumor budding as an indicator of a more aggressive phenotype of colorectal cancer (CRC). Anticancer Res 26:1589–1594

    PubMed  Google Scholar 

  40. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  CAS  PubMed  Google Scholar 

  41. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  CAS  PubMed  Google Scholar 

  42. De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65:6237–6244

    Article  PubMed  Google Scholar 

  43. Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967

    Article  CAS  PubMed  Google Scholar 

  44. Yusra SS, Yokozaki H (2012) Biological significance of tumor budding at the invasive front of human colorectal carcinoma cells. Int J Oncol 41:201–210

    CAS  PubMed  Google Scholar 

  45. Kim YH, Kim G, Kwon CI, Kim JW, Park PW, Hahm KB (2014) TWIST1 and SNAI1 as markers of poor prognosis in human colorectal cancer are associated with the expression of ALDH1 and TGF-β1. Oncol Rep 31:1380–1388

    CAS  PubMed  Google Scholar 

  46. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33:6566–6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tania M, Khan MA, Fu J (2014) Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol 35:7335–7342

    Article  CAS  PubMed  Google Scholar 

  48. Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T, Kurasawa Y, Muramatsu T, Sugihara K, Inazawa J (2012) SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene 31:4923–4934

    Article  CAS  PubMed  Google Scholar 

  49. Zhang GJ, Zhou T, Tian HP, Liu ZL, Xia SS (2013) High expression of ZEB1 correlates with liver metastasis and poor prognosis in colorectal cancer. Oncol Lett 5:564–568

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kahlert C, Lahes S, Radhakrishnan P, Dutta S, Mogler C, Herpel E, Brand K, Steinert G, Schneider M, Mollenhauer M, et al. (2011) Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res 17:7654–7663

    Article  CAS  PubMed  Google Scholar 

  51. Galván JA, Astudillo A, Vallina A, Crespo G, Folgueras MV, González MV (2014) Prognostic and diagnostic value of epithelial to mesenchymal transition markers in pulmonary neuroendocrine tumors. BMC Cancer 14:855

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jass JR, Young J, Leggett BA (2002) Evolution of colorectal cancer: change of pace and change of direction. J Gastroenterol Hepatol 17:17–26

    Article  PubMed  Google Scholar 

  53. Dawson H, Lugli A (2015) Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med (Lausanne) 2:11

    Google Scholar 

  54. Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A (2011) β-Catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A 108:19204–19209

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brabletz T, Jung A, Hermann K, Günther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704

    Article  CAS  PubMed  Google Scholar 

  56. Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek G, Brabletz T, Kirchner T (2001) The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T, Ben-Ze’ev A (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. El-Gendi S, Al-Gendi A (2011) Assessment of tumor budding in colorectal carcinoma: correlation with β-catenin nuclear expression. J Egypt Natl Canc Inst 23:1–9

    Article  CAS  PubMed  Google Scholar 

  59. Hörkkö TT, Klintrup K, Mäkinen JM, Näpänkangas JB, Tuominen HJ, Mäkelä J, Karttunen TJ, Mäkinen MJ (2006) Budding invasive margin and prognosis in colorectal cancer—no direct association with beta-catenin expression. Eur J Cancer 42:964–971

    Article  PubMed  Google Scholar 

  60. Gao ZH, Lu C, Wang MX, Han Y, Guo LJ (2014) Differential β-catenin expression levels are associated with morphological features and prognosis of colorectal cancer. Oncol Lett 8:2069–2076

    PubMed  PubMed Central  Google Scholar 

  61. Chen Z, He X, Jia M, Liu Y, Qu D, Wu D, Wu P, Ni C, Zhang Z, Ye J, et al. (2013) β-catenin overexpression in the nucleus predicts progress disease and unfavourable survival in colorectal cancer: a meta-analysis. PLoS One 8:e63854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brabletz T, Spaderna S, Kolb J, Hlubek F, Faller G, Bruns CJ, Jung A, Nentwich J, Duluc I, Domon-Dell C, et al. (2004) Down-regulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I: an active role for the tumor environment in malignant tumor progression. Cancer Res 64:6973–6977

    Article  CAS  PubMed  Google Scholar 

  63. Sordat I, Bosman FT, Dorta G, Rousselle P, Aberdam D, Blum AL, Sordat B (1998) Differential expression of laminin-5 subunits and integrin receptors in human colorectal neoplasia. J Pathol 185:44–52

    Article  CAS  PubMed  Google Scholar 

  64. Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T (2004) Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer 108:321–326

    Article  CAS  PubMed  Google Scholar 

  65. Hlubek F, Jung A, Kotzor N, Kirchner T, Brabletz T (2001) Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res 61:8089–8093

    CAS  PubMed  Google Scholar 

  66. Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y (2002) Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21:5861–5867

    Article  CAS  PubMed  Google Scholar 

  67. Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148:615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gosens MJ, van Kempen LC, van de Velde CJ, van Krieken JH, Nagtegaal ID (2007) Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol 20:221–232

    Article  CAS  PubMed  Google Scholar 

  69. Karamitopoulou E (2013) Role of epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma: is tumor budding the missing link? Front Oncol 3:221

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dawson H, Koelzer VH, Karamitopoulou E, Economou M, Hammer C, Muller DE, Lugli A, Zlobec I (2014) The apoptotic and proliferation rate of tumour budding cells in colorectal cancer outlines a heterogeneous population of cells with various impacts on clinical outcome. Histopathology 64:577–584

    Article  PubMed  Google Scholar 

  71. Koelzer VH, Karamitopoulou E, Dawson H, Kondi-Pafiti A, Zlobec I, Lugli A (2013) Geographic analysis of RKIP expression and its clinical relevance in colorectal cancer. Br J Cancer 108:2088–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karamitopoulou E, Zlobec I, Gloor B, Kondi-Pafiti A, Lugli A, Perren A (2013) Loss of Raf-1 kinase inhibitor protein (RKIP) is strongly associated with high-grade tumor budding and correlates with an aggressive phenotype in pancreatic ductal adenocarcinoma (PDAC). J Transl Med 11:311

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O’Connor KL, Gao T, Evers BM (2011) mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 71:3246–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hostettler L, Zlobec I, Terracciano L, Lugli A (2010) ABCG5-positivity in tumor buds is an indicator of poor prognosis in node-negative colorectal cancer patients. World J Gastroenterol 16:732–739

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zlobec I, Minoo P, Terracciano L, Baker K, Lugli A (2011) Characterization of the immunological microenvironment of tumour buds and its impact on prognosis in mismatch repair-proficient and -deficient colorectal cancers. Histopathology 59:482–495

    Article  PubMed  Google Scholar 

  76. Kevans D, Wang LM, Sheahan K, Hyland J, O’Donoghue D, Mulcahy H, O’Sullivan J (2011) Epithelial-mesenchymal transition (EMT) protein expression in a cohort of stage II colorectal cancer patients with characterized tumor budding and mismatch repair protein status. Int J Surg Pathol 19:751–760

    Article  CAS  PubMed  Google Scholar 

  77. Lugli A, Karamitopoulou E, Panayiotides I, Karakitsos P, Rallis G, Peros G, Iezzi G, Spagnoli G, Bihl M, Terracciano L, Zlobec I (2009) CD8+ lymphocytes/tumour-budding index: an independent prognostic factor representing a ‘pro-/anti-tumour’ approach to tumour host interaction in colorectal cancer. Br J Cancer 101:1382–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steinestel K, Lennerz JK, Eder S, Kraft K, Arndt A (2014) Invasion pattern and histologic features of tumor aggressiveness correlate with MMR protein expression, but are independent of activating KRAS and BRAF mutations in CRC. Virchows Arch 465:155–163

    Article  CAS  PubMed  Google Scholar 

  79. Prall F, Ostwald C (2007) High-degree tumor budding and podia-formation in sporadic colorectal carcinomas with K-ras gene mutations. Hum Pathol 38:1696–1702

    Article  CAS  PubMed  Google Scholar 

  80. De Smedt L, Lemahieu J, Palmans S, Govaere O, Tousseyn T, Van Cutsem E, Prenen H, Tejpar S, Spaepen M, Matthijs G, et al. (2015) Microsatellite instable vs stable colon carcinomas: analysis of tumour heterogeneity, inflammation and angiogenesis. Br J Cancer 113:500–509

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Sagaert.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Smedt, L., Palmans, S. & Sagaert, X. Tumour budding in colorectal cancer: what do we know and what can we do?. Virchows Arch 468, 397–408 (2016). https://doi.org/10.1007/s00428-015-1886-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1886-5

Keywords

Navigation