Skip to main content

Advertisement

Log in

Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Basal-like breast cancers are aggressive and often metastasize to vital organs. Treatment is largely limited to chemotherapy. This study aims to characterize the efficacy of cancer therapeutics in vitro and in vivo within the primary tumor and metastatic setting, using patient-derived xenograft (PDX) models.

Methods

We employed two basal-like, triple-negative PDX models, WHIM2 and WHIM30. PDX cells, obtained from mammary tumors grown in mice, were treated with twelve cancer therapeutics to evaluate their cytotoxicity in vitro. Four of the effective drugs—carboplatin, cyclophosphamide, bortezomib, and dacarbazine—were tested in vivo for their efficacy in treating mammary tumors, and metastases generated by intracardiac injection of tumor cells.

Results

RNA sequencing showed that global gene expression of PDX cells grown in the mammary gland was similar to those tested in culture. In vitro, carboplatin was cytotoxic to WHIM30 but not WHIM2, whereas bortezomib, dacarbazine, and cyclophosphamide were cytotoxic to both lines. Yet, these drugs were ineffective in treating both primary and metastatic WHIM2 tumors in vivo. Carboplatin and cyclophosphamide were effective in treating WHIM30 mammary tumors and reducing metastatic burden in the brain, liver, and lungs. WHIM2 and WHIM30 metastases showed distinct patterns of cytokeratin and vimentin expression, regardless of treatment, suggesting that different tumor cell subpopulations may preferentially seed in different organs.

Conclusions

This study highlights the utility of PDX models for studying the efficacy of therapeutics in reducing metastatic burden in specific organs. The differential treatment responses between two PDX models of the same intrinsic subtype, in both the primary and metastatic setting, recapitulates the challenges faced in treating cancer patients and highlights the need for combination therapies and predictive biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Howlader N, Noone A, Krapcho M, et al (2017) SEER cancer statistics review (CSR), 1975–2014. In: Natational Cancer Institute https://seer.cancer.gov/csr/1975_2014/. Accessed 5 Feb 2017

  2. Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434. https://doi.org/10.1158/1078-0432.CCR-06-3045

    Article  PubMed  Google Scholar 

  3. Jitariu A-A, Cîmpean AM, Ribatti D, Raica M (2015) Triple negative breast cancer: the kiss of death. Oncotarget. https://doi.org/10.18632/oncotarget.16938

    Article  Google Scholar 

  4. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. https://doi.org/10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  5. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5:5–23. https://doi.org/10.1016/j.molonc.2010.11.003

    Article  PubMed  CAS  Google Scholar 

  6. Curtis C, Shah SP, Chin S-F et al (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486:346–352. https://doi.org/10.1038/nature10983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Koboldt DC, Fulton RS, McLellan MD et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  8. Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874. https://doi.org/10.1073/pnas.191367098

    Article  PubMed  PubMed Central  Google Scholar 

  9. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536. https://doi.org/10.1038/415530a

    Article  Google Scholar 

  10. Sørlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40:2667–2675. https://doi.org/10.1016/j.ejca.2004.08.021

    Article  PubMed  CAS  Google Scholar 

  11. Harrell JC, Aleix P, Parker JS et al (2012) Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat 132:523–535. https://doi.org/10.1007/s10549-011-1619-7

    Article  PubMed  CAS  Google Scholar 

  12. Lin NU, Claus E, Sohl J et al (2008) Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer. Cancer 113:2638–2645. https://doi.org/10.1002/cncr.23930

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dent R, Hanna WM, Trudeau M et al (2009) Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat 115:423–428. https://doi.org/10.1007/s10549-008-0086-2

    Article  PubMed  Google Scholar 

  14. Houghton JA, Houghton PJ, Green AA (1982) Chemotherapy of childhood rhabdomyosarcomas growing as xenografts in immune-deprived mice. Cancer Res 42:535–539

    PubMed  CAS  Google Scholar 

  15. Fiebig HH, Neumann HA, Henss H et al (1985) Development of three human small cell lung cancer models in nude mice. Recent Results Cancer Res 97:77–86

    Article  PubMed  CAS  Google Scholar 

  16. Fichtner I, Slisow W, Gill J et al (2004) Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer 40:298–307

    Article  PubMed  CAS  Google Scholar 

  17. Fichtner I, Rolff J, Soong R et al (2008) Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 14:6456–6468. https://doi.org/10.1158/1078-0432.CCR-08-0138

    Article  PubMed  CAS  Google Scholar 

  18. Daniel VC, Marchionni L, Hierman JS et al (2009) A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69:3364–3373. https://doi.org/10.1158/0008-5472.CAN-08-4210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tentler JJ, Tan AC, Weekes CD et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350. https://doi.org/10.1038/nrclinonc.2012.61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Siolas D, Hannon GJ (2013) Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73:5315–5319. https://doi.org/10.1158/0008-5472.CAN-13-1069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hidalgo M, Amant F, Biankin AV et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4:998–1013. https://doi.org/10.1158/2159-8290.CD-14-0001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Choi YY, Lee JE, Kim H et al (2016) Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Sci Rep 6:22172. https://doi.org/10.1038/srep22172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. DeRose YS, Wang G, Lin Y-C et al (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17:1514–1520. https://doi.org/10.1038/nm.2454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Huang K, Li S, Mertins P et al (2017) Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 8:14864. https://doi.org/10.1038/ncomms14864

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang X, Claerhout S, Prat A et al (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73:4885–4897. https://doi.org/10.1158/0008-5472.CAN-12-4081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Marangoni E, Vincent-Salomon A, Auger N et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13:3989–3998. https://doi.org/10.1158/1078-0432.CCR-07-0078

    Article  PubMed  CAS  Google Scholar 

  27. Ding L, Ellis MJ, Li S et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005. https://doi.org/10.1038/nature08989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. DeRose YS, Gligorich KM, Wang G et al (2013) Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol Chapter 14(Unit14):23. https://doi.org/10.1002/0471141755.ph1423s60

    Article  Google Scholar 

  29. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527. https://doi.org/10.1016/j.ccr.2006.10.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kao J, Salari K, Bocanegra M et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE. https://doi.org/10.1371/journal.pone.0006146

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tsuji K, Kawauchi S, Saito S et al (2010) Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues. BMC Cancer. https://doi.org/10.1186/1471-2407-10-15

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bruna A, Rueda OM, Greenwood W et al (2016) A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 167(260–274):e22. https://doi.org/10.1016/j.cell.2016.08.041

    Article  CAS  Google Scholar 

  33. Kuroda Y, Wakao S, Kitada M et al (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8:1391–1415. https://doi.org/10.1038/nprot.2013.076

    Article  PubMed  CAS  Google Scholar 

  34. Byrski T, Dent R, Blecharz P et al (2012) Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res 14:R110. https://doi.org/10.1186/bcr3231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Turner NC, Tutt ANJ (2012) Platinum chemotherapy for BRCA1-related breast cancer: do we need more evidence? Breast Cancer Res 14:115. https://doi.org/10.1186/bcr3332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024. https://doi.org/10.1242/jcs.079509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xu X, Farach-Carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 32:1256–1268. https://doi.org/10.1016/j.biotechadv.2014.07.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Theodoraki MA, Rezende CO, Chantarasriwong O et al (2015) Spontaneously-forming spheroids as an in vitro cancer cell model for anticancer drug screening. Oncotarget 6:21255–21267. https://doi.org/10.18632/oncotarget.4013

    Article  PubMed  PubMed Central  Google Scholar 

  39. Breithaupt H, Dammann A, Aigner K (1982) Pharmacokinetics of dacarbazine (DTIC) and its metabolite 5-aminoimidazole-4-carboxamide (AIC) following different dose schedules. Cancer Chemother Pharmacol 9:103–109

    Article  PubMed  CAS  Google Scholar 

  40. Li S, Shen D, Shao J et al (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 4:1116–1130. https://doi.org/10.1016/j.celrep.2013.08.022

    Article  PubMed  CAS  Google Scholar 

  41. Ogawa K, Yoshii Y, Nishimaki T et al (2008) Treatment and prognosis of brain metastases from breast cancer. J Neurooncol 86:231–238. https://doi.org/10.1007/s11060-007-9469-1

    Article  PubMed  Google Scholar 

  42. Lee SS, Ahn J-H, Kim MK et al (2008) Brain metastases in breast cancer: prognostic factors and management. Breast Cancer Res Treat 111:523–530. https://doi.org/10.1007/s10549-007-9806-2

    Article  PubMed  Google Scholar 

  43. Zhou H, Zhao D (2014) Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI. J Vis Exp. https://doi.org/10.3791/51146

    Article  PubMed  PubMed Central  Google Scholar 

  44. Percy DB, Ribot EJ, Chen Y et al (2011) In vivo characterization of changing blood-tumor barrier permeability in a mouse model of breast cancer metastasis: a complementary magnetic resonance imaging approach. Invest Radiol 46:718–725. https://doi.org/10.1097/RLI.0b013e318226c427

    Article  PubMed  Google Scholar 

  45. Bos PD, Zhang XH-F, Nadal C et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009. https://doi.org/10.1038/nature08021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Boisdron-Celle M, Lebouil A, Allain P, Gamelin E (2001) Pharmacokinetic properties of platinium derivatives. Bull Cancer 88:14–19

    Google Scholar 

  47. Genka S, Deutsch J, Stahle PL et al (1990) Brain and plasma pharmacokinetics and anticancer activities of cyclophosphamide and phosphoramide mustard in the rat. Cancer Chemother Pharmacol 27:1–7

    Article  PubMed  CAS  Google Scholar 

  48. Arndt CA, Balis FM, McCully CL et al (1988) Cerebrospinal fluid penetration of active metabolites of cyclophosphamide and ifosfamide in rhesus monkeys. Cancer Res 48:2113–2115

    PubMed  CAS  Google Scholar 

  49. Livasy CA, Karaca G, Nanda R et al (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271. https://doi.org/10.1038/modpathol.3800528

    Article  PubMed  CAS  Google Scholar 

  50. Polioudaki H, Agelaki S, Chiotaki R et al (2015) Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer 15:399. https://doi.org/10.1186/s12885-015-1386-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Thompson EW, Paik S, Brünner N et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544. https://doi.org/10.1002/jcp.1041500314

    Article  PubMed  CAS  Google Scholar 

  52. Hendrix MJ, Seftor EA, Seftor RE, Trevor KT (1997) Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol 150:483–495

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Calvo JL, Carbonell AL, Boya J (1991) Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats. Brain Res 566:333–336

    Article  PubMed  CAS  Google Scholar 

  54. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434. https://doi.org/10.1002/glia.20207

    Article  PubMed  Google Scholar 

  55. Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176:2958–2971. https://doi.org/10.2353/ajpath.2010.090838

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572. https://doi.org/10.1038/nrc865

    Article  PubMed  CAS  Google Scholar 

  57. Sirica AE, Gores GJ (2014) Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology 59:2397–2402. https://doi.org/10.1002/hep.26762

    Article  PubMed  PubMed Central  Google Scholar 

  58. McMillin DW, Negri JM, Mitsiades CS (2013) The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 12:217–228. https://doi.org/10.1038/nrd3870

    Article  PubMed  CAS  Google Scholar 

  59. Bichat F, Mouawad R, Solis-Recendez G et al (1997) Cytoskeleton alteration in MCF7R cells, a multidrug resistant human breast cancer cell line. Anticancer Res 17:3393–3401

    PubMed  CAS  Google Scholar 

  60. Sommers CL, Heckford SE, Skerker JM et al (1992) Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52:5190–5197

    PubMed  CAS  Google Scholar 

  61. Arumugam T, Ramachandran V, Fournier KF et al (2009) Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69:5820–5828. https://doi.org/10.1158/0008-5472.CAN-08-2819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lazarova DL, Bordonaro M (2016) Vimentin, colon cancer progression and resistance to butyrate and other HDACis. J Cell Mol Med 20:989–993. https://doi.org/10.1111/jcmm.12850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hu Y, Zang J, Qin X et al (2017) Epithelial-to-mesenchymal transition correlates with gefitinib resistance in NSCLC cells and the liver X receptor ligand GW3965 reverses gefitinib resistance through inhibition of vimentin. Onco Targets Ther 10:2341–2348. https://doi.org/10.2147/OTT.S124757

    Article  PubMed  PubMed Central  Google Scholar 

  64. Casasent AK, Schalck A, Gao R et al (2018) Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172(205–217):e12. https://doi.org/10.1016/j.cell.2017.12.007

    Article  CAS  Google Scholar 

  65. Hoadley KA, Siegel MB, Kanchi KL et al (2016) Tumor evolution in two patients with basal-like breast cancer: a retrospective genomics study of multiple metastases. PLoS Med 13:e1002174. https://doi.org/10.1371/journal.pmed.1002174

    Article  PubMed  PubMed Central  Google Scholar 

  66. Avigdor BE, Cimino-Mathews A, DeMarzo AM et al (2017) Mutational profiles of breast cancer metastases from a rapid autopsy series reveal multiple evolutionary trajectories. JCI Insight. https://doi.org/10.1172/jci.insight.96896

    Article  PubMed  PubMed Central  Google Scholar 

  67. Savas P, Teo ZL, Lefevre C et al (2016) The subclonal architecture of metastatic breast cancer: results from a prospective community-based rapid autopsy program “CASCADE”. PLoS Med 13:e1002204. https://doi.org/10.1371/journal.pmed.1002204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gao H, Korn JM, Ferretti S et al (2015) High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 21:1318–1325. https://doi.org/10.1038/nm.3954

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank our patient advocate Mrs. Cathy Greene. We thank Dr. Shunqiang Li of Washington University for the PDXs. We thank Brigham Young University DNA Sequencing Center for RNA-sequencing services and Virginia Commonwealth University Massey Cancer Center (MCC) core facilities; Mouse Models Core and FACS Core. Grant support: METAvivor (JCH), MCC pilot project (JCH, MGD). Services and products in support of the research project were generated by the VCU MCC Cancer Mouse Model Shared Resource, supported, in part, with funding from NIH-NCI Cancer Center Support Grant P30 CA016059. ALO was supported by CTSA award No. UL1TR000058 from the National Center for Advancing Translational Sciences.

Author information

Authors and Affiliations

Authors

Contributions

THT designed and performed the experiments, and wrote the manuscript; MAA assisted with in vivo studies and edited the manuscript; SSS assisted with in vivo studies and IHC experiments; ALO performed RNA-seq analyses and edited the manuscript; MGD performed RNA-seq analyses, statistical analyses, and edited the manuscript. JCH designed the experiments, supervised the studies, and wrote the manuscript.

Corresponding author

Correspondence to J. Chuck Harrell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, T.H., Alzubi, M.A., Sohal, S.S. et al. Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer. Breast Cancer Res Treat 170, 221–234 (2018). https://doi.org/10.1007/s10549-018-4748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4748-4

Keywords

Navigation