Skip to main content

Advertisement

Log in

Current Update of Patient-Derived Xenograft Model for Translational Breast Cancer Research

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Despite recent advances in the treatment of patients with breast cancer (BrCa), BrCa remains the third leading cause of cancer death for women in the US due to intrinsic or acquired resistance to therapy. Continued understanding of gene expression profiling and genomic sequencing has clarified underlying intratumoral molecular heterogeneity. Recently, the patient-derived xenograft (PDX) models have emerged as a novel tool to address the issues of BrCa genomics and tumor heterogeneity, and to critically transform translational BrCa research in the preclinical setting. PDX models are generated by xenografting cancer tissue fragments obtained from patients to immune deficient mice, and can be passaged into next generations of mice. Generally, in contrast to conventional xenograft using cancer cell lines, PDXs are biologically more stable and recapitulate the individual tumor morphology, gene expression, and drug susceptibility of each patient. PDX may better model the original patient’s tumor by retaining tumor heterogeneity, gene expression, and similar response to treatment. PDX models are thus thought to be more translationally relevant, especially as a drug development tool, because PDXs can capture the genetic character and heterogeneity that exists within a single patient’s tumor and across a population of patients’ tumors. PDX models also hold enormous potential for identifying predictive markers for therapeutic response. It has been repeatedly shown that PDX models demonstrate similar levels of activity as compared to the clinical response to therapeutic interventions. Therefore, this enables identification of therapeutic interventions that can most likely benefit a patient. This allows us to address the issues of BrCa genomics and tumor heterogeneity using PDXs in “pre-clinical” trials. Herein, we reviewed recent scientific development and future perspectives using PDX models in BrCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SEER Stat Fact Sheets: Female Breast Cancer. 2016. http://seer.cancer.gov/statfacts/html/breast.html. 2016.

  2. Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol. 2008;26(5):721–8. doi:10.1200/jco.2007.15.1068.

    Article  PubMed  Google Scholar 

  3. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72. doi:10.1056/NEJMoa052306.

    Article  CAS  PubMed  Google Scholar 

  4. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34. doi:10.1056/NEJMoa1413513.

    Article  CAS  PubMed  Google Scholar 

  5. Thurlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747–57. doi:10.1056/NEJMoa052258.

    Article  PubMed  Google Scholar 

  6. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Prospective validation of a 21-Gene expression assay in breast cancer. N Engl J Med. 2015;373(21):2005–14. doi:10.1056/NEJMoa1510764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. doi:10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  8. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74. doi:10.1073/pnas.191367098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gancberg D, Di Leo A, Cardoso F, Rouas G, Pedrocchi M, Paesmans M, et al. Comparison of HER-2 status between primary breast cancer and corresponding distant metastatic sites. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2002;13(7):1036–43.

    Article  CAS  Google Scholar 

  10. Simon R, Nocito A, Hubscher T, Bucher C, Torhorst J, Schraml P, et al. Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J Natl Cancer Inst. 2001;93(15):1141–6.

    Article  CAS  PubMed  Google Scholar 

  11. Bonsing BA, Corver WE, Fleuren GJ, Cleton-Jansen AM, Devilee P, Cornelisse CJ. Allelotype analysis of flow-sorted breast cancer cells demonstrates genetically related diploid and aneuploid subpopulations in primary tumors and lymph node metastases. Genes, chromosomes & cancer. 2000;28(2):173–83.

    Article  CAS  Google Scholar 

  12. Fiebig HH, Neumann HA, Henss H, Koch H, Kaiser D, Arnold H. Development of three human small cell lung cancer models in nude mice. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 1985;97:77–86.

    CAS  PubMed  Google Scholar 

  13. DeRose YS, Gligorich KM, Wang G, Georgelas A, Bowman P, Courdy SJ et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Current protocols in pharmacology / editorial board, SJ Enna (editor-in-chief) [et al]. 2013;Chapter 14:Unit14.23. doi:10.1002/0471141755.ph1423s60.

  14. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc. 2009;4(11):1670–80. doi:10.1038/nprot.2009.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. doi:10.1016/j.stem.2007.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(5):1442–51. doi:10.1158/1078-0432.ccr-09-2878.

    Article  CAS  Google Scholar 

  17. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(20):6456–68. doi:10.1158/1078-0432.ccr-08-0138.

    Article  CAS  Google Scholar 

  18. Wang X, Fu X, Hoffman RM. A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. International journal of cancer Journal international du cancer. 1992;51(6):992–5.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97. doi:10.1158/0008-5472.can-12-4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eyre R, Alferez DG, Spence K, Kamal M, Shaw FL, Simoes BM, et al. Patient-derived Mammosphere and xenograft tumour initiation correlates with progression to metastasis. J Mammary Gland Biol Neoplasia. 2016;21(3–4):99–109. doi:10.1007/s10911-016-9361-8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nemati F, Sastre-Garau X, Laurent C, Couturier J, Mariani P, Desjardins L, et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(8):2352–62. doi:10.1158/1078-0432.ccr-09-3066.

    Article  CAS  Google Scholar 

  22. Sivanand S, Pena-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Science translational medicine. 2012;4(137):137ra75. doi:10.1126/scitranslmed.3003643.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rashid OM, Nagahashi M, Ramachandran S, Dumur C, Schaum J, Yamada A, et al. An improved syngeneic orthotopic murine model of human breast cancer progression. Breast Cancer Res Treat. 2014;147(3):501–12. doi:10.1007/s10549-014-3118-0.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rashid OM, Nagahashi M, Ramachandran S, Dumur CI, Schaum JC, Yamada A, et al. Is tail vein injection a relevant breast cancer lung metastasis model? Journal of thoracic disease. 2013;5(4):385–92. doi:10.3978/j.issn.2072-1439.2013.06.17.

    PubMed  PubMed Central  Google Scholar 

  25. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res. 2012;72(3):726–35. doi:10.1158/0008-5472.can-11-2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vidal A, Munoz C, Guillen MJ, Moreto J, Puertas S, Martinez-Iniesta M, et al. Lurbinectedin (PM01183), a new DNA minor groove binder, inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18(19):5399–411. doi:10.1158/1078-0432.ccr-12-1513.

    Article  CAS  Google Scholar 

  27. Cottu P, Bieche I, Assayag F, El Botty R, Chateau-Joubert S, Thuleau A, et al. Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(16):4314–25. doi:10.1158/1078-0432.ccr-13-3230.

    Article  CAS  Google Scholar 

  28. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518(7539):422–6. doi:10.1038/nature13952.

    Article  CAS  PubMed  Google Scholar 

  29. Green JL, La J, Yum KW, Desai P, Rodewald LW, Zhang X, et al. Paracrine Wnt signaling both promotes and inhibits human breast tumor growth. Proc Natl Acad Sci U S A. 2013;110(17):6991–6. doi:10.1073/pnas.1303671110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer discovery. 2012;2(11):1036–47. doi:10.1158/2159-8290.cd-11-0348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat. 2012;135(2):415–32. doi:10.1007/s10549-012-2164-8.

    Article  CAS  PubMed  Google Scholar 

  32. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131–5. doi:10.1038/nature15260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4(6):1116–30. doi:10.1016/j.celrep.2013.08.022.

    Article  CAS  PubMed  Google Scholar 

  34. Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaiff WT, et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest. 2012;122(4):1541–52. doi:10.1172/jci58765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oakes SR, Vaillant F, Lim E, Lee L, Breslin K, Feleppa F, et al. Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc Natl Acad Sci U S A. 2012;109(8):2766–71. doi:10.1073/pnas.1104778108.

    Article  CAS  PubMed  Google Scholar 

  36. Romanelli A, Clark A, Assayag F, Chateau-Joubert S, Poupon MF, Servely JL, et al. Inhibiting aurora kinases reduces tumor growth and suppresses tumor recurrence after chemotherapy in patient-derived triple-negative breast cancer xenografts. Mol Cancer Ther. 2012;11(12):2693–703. doi:10.1158/1535-7163.mct-12-0441-t.

    Article  CAS  PubMed  Google Scholar 

  37. Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(6):1512–24. doi:10.1158/1078-0432.ccr-11-3326.

    Article  CAS  Google Scholar 

  38. Simoes BM, O'Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A, et al. Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Rep. 2015;12(12):1968–77. doi:10.1016/j.celrep.2015.08.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zacarias-Fluck MF, Morancho B, Vicario R, Luque Garcia A, Escorihuela M, Villanueva J, et al. Effect of cellular senescence on the growth of HER2-positive breast cancers. Journal of the National Cancer Institute. 2015;107(5) doi:10.1093/jnci/djv020.

  40. Zhang H, Cohen AL, Krishnakumar S, Wapnir IL, Veeriah S, Deng G, et al. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast cancer research : BCR. 2014;16(2):R36. doi:10.1186/bcr3640.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31. doi:10.1054/bjoc.2001.1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hausser HJ, Brenner RE. Phenotypic instability of Saos-2 cells in long-term culture. Biochem Biophys Res Commun. 2005;333(1):216–22. doi:10.1016/j.bbrc.2005.05.097.

    Article  CAS  PubMed  Google Scholar 

  43. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69(8):3364–73. doi:10.1158/0008-5472.can-08-4210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24(1):120–9. doi:10.1016/j.ccr.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  45. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20. doi:10.1038/nm.2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, et al. Molecular profiling of patient-derived breast cancer xenografts. Breast cancer research : BCR. 2012;14(1):R11. doi:10.1186/bcr3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. du Manoir S, Orsetti B, Bras-Goncalves R, Nguyen TT, Lasorsa L, Boissiere F, et al. Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Mol Oncol. 2014;8(2):431–43. doi:10.1016/j.molonc.2013.11.010.

    Article  PubMed  Google Scholar 

  48. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464(7291):999–1005. doi:10.1038/nature08989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200(4):429–47. doi:10.1002/path.1398.

    Article  CAS  PubMed  Google Scholar 

  50. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54. doi:10.1038/nature12626.

    Article  CAS  PubMed  Google Scholar 

  51. Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015;75(15):2963–8. doi:10.1158/0008-5472.can-15-0727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh JK, Farnie G, Bundred NJ, Simoes BM, Shergill A, Landberg G, et al. Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(3):643–56. doi:10.1158/1078-0432.ccr-12-1063.

    Article  CAS  Google Scholar 

  53. Moestue SA, Dam CG, Gorad SS, Kristian A, Bofin A, Maelandsmo GM, et al. Metabolic biomarkers for response to PI3K inhibition in basal-like breast cancer. Breast cancer research : BCR. 2013;15(1):R16. doi:10.1186/bcr3391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qiu M, Peng Q, Jiang I, Carroll C, Han G, Rymer I, et al. Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett. 2013;328(2):261–70. doi:10.1016/j.canlet.2012.09.023.

    Article  CAS  PubMed  Google Scholar 

  55. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(13):3989–98. doi:10.1158/1078-0432.ccr-07-0078.

    Article  CAS  Google Scholar 

  56. Bousquet G, Feugeas JP, Ferreira I, Vercellino L, Jourdan N, Bertheau P, et al. Individual xenograft as a personalized therapeutic resort for women with metastatic triple-negative breast carcinoma. Breast cancer research : BCR. 2014;16(1):401. doi:10.1186/bcr3615.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Keysar SB, Astling DP, Anderson RT, Vogler BW, Bowles DW, Morton JJ, et al. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol Oncol. 2013;7(4):776–90. doi:10.1016/j.molonc.2013.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, et al. An in vivo platform for translational drug development in pancreatic cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006;12(15):4652–61. doi:10.1158/1078-0432.ccr-06-0113.

    Article  CAS  Google Scholar 

  59. Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev. 2016;35(4):547–73. doi:10.1007/s10555-016-9653-x.

    Article  CAS  PubMed  Google Scholar 

  60. Moon HG, Oh K, Lee J, Lee M, Kim JY, Yoo TK, et al. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. Breast Cancer Res Treat. 2015;154(1):13–22. doi:10.1007/s10549-015-3585-y.

    Article  PubMed  Google Scholar 

  61. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. doi:10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang CC, Bajikar SS, Jamal L, Atkins KA, Janes KA. A time- and matrix-dependent TGFBR3-JUND-KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies. Nat Cell Biol. 2014;16(4):345–56. doi:10.1038/ncb2930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chou JL, Shen ZX, Stolfi RL, Martin DS, Waxman S. Effects of extracellular matrix on the growth and casein gene expression of primary mouse mammary tumor cells in vitro. Cancer Res. 1989;49(19):5371–6.

    CAS  PubMed  Google Scholar 

  64. Schuetz EG, Li D, Omiecinski CJ, Muller-Eberhard U, Kleinman HK, Elswick B, et al. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol. 1988;134(3):309–23. doi:10.1002/jcp.1041340302.

    Article  CAS  PubMed  Google Scholar 

  65. Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017; doi:10.1038/nrc.2016.140.

    PubMed  Google Scholar 

  66. Zhao H, Nolley R, Chan AM, Rankin EB, Peehl DM. Cabozantinib inhibits tumor growth and metastasis of a patient-derived xenograft model of papillary renal cell carcinoma with MET mutation. Cancer biology & therapy 2016:0. doi:10.1080/15384047.2016.1219816.

  67. Torphy RJ, Tignanelli CJ, Kamande JW, Moffitt RA, Herrera Loeza SG, Soper SA, et al. Circulating tumor cells as a biomarker of response to treatment in patient-derived xenograft mouse models of pancreatic adenocarcinoma. PLoS One. 2014;9(2):e89474. doi:10.1371/journal.pone.0089474.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8. doi:10.1073/pnas.0804549105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 2008;68(13):5405–13. doi:10.1158/0008-5472.can-07-5206.

    Article  CAS  PubMed  Google Scholar 

  70. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81. doi:10.1038/nature13988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gray MJ, Gong J, Hatch MM, Nguyen V, Hughes CC, Hutchins JT, et al. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast cancer research : BCR. 2016;18(1):50. doi:10.1186/s13058-016-0708-2.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hamm CA, Moran D, Rao K, Trusk PB, Pry K, Sausen M, et al. Genomic and immunological tumor profiling identifies targetable pathways and extensive CD8+/PDL1+ immune infiltration in inflammatory breast cancer tumors. Mol Cancer Ther. 2016; doi:10.1158/1535-7163.mct-15-0353.

    PubMed  Google Scholar 

  73. Werner-Klein M, Proske J, Werno C, Schneider K, Hofmann HS, Rack B, et al. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients. PLoS One. 2014;9(5):e97860. doi:10.1371/journal.pone.0097860.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lee EK, Joo EH, Song KA, Choi B, Kim M, Kim SH, et al. Effects of lymphocyte profile on development of EBV-induced lymphoma subtypes in humanized mice. Proc Natl Acad Sci U S A. 2015;112(42):13081–6. doi:10.1073/pnas.1407075112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Skirecki T, Kawiak J, Machaj E, Pojda Z, Wasilewska D, Czubak J, et al. Early severe impairment of hematopoietic stem and progenitor cells from the bone marrow caused by CLP sepsis and endotoxemia in a humanized mice model. Stem cell research & therapy. 2015;6:142. doi:10.1186/s13287-015-0135-9.

    Article  Google Scholar 

  76. Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, et al. PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog. 2016;12(5):e1005642. doi:10.1371/journal.ppat.1005642.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TK and KT wrote manuscript, BF and JY provided edition and comment on this review, and KT supervised this manuscript.

Corresponding author

Correspondence to Kazuaki Takabe.

Ethics declarations

Consent for Publication

All authors consent for publication.

Conflict of Interests

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

KT is supported by NIH/NCI grant R01CA160688 and Susan G. Komen Investigator Initiated Research Grant IIR12222224.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, T., Foster, B.A., Young, J. et al. Current Update of Patient-Derived Xenograft Model for Translational Breast Cancer Research. J Mammary Gland Biol Neoplasia 22, 131–139 (2017). https://doi.org/10.1007/s10911-017-9378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-017-9378-7

Keywords

Navigation