Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180. doi:10.1210/edrv-12-2-151
PubMed
Article
CAS
Google Scholar
Reiter RJ (1993) The melatonin rhythms: both a clock and a calendar. Experientia 49:654–664
PubMed
Article
CAS
Google Scholar
Reiter RJ, Tan DX, Jou MJ, Korkmaz A, Manchester LC, Paredes SD (2008) Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites (Review). Neuro Endocrinol Lett 29:391–398
PubMed
Google Scholar
Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27:101–110. doi:10.1385/ENDO:27:2:101
PubMed
Article
CAS
Google Scholar
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62:343–380. doi:10.1124/pr.110.002832
PubMed
Article
CAS
Google Scholar
Hill SM, Frasch T, Xiang S, Yuan L, Duplessis T, Mao L (2009) Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther 8:337–346
PubMed
Article
CAS
Google Scholar
Blask DE, Sauer LA, Dauchy RT (2002) Melatonin as a chronobiotic anti-cancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy (Review). Curr Top Med Chem 2:113–132
PubMed
Article
CAS
Google Scholar
Hill SM, Blask DE (1988) Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res 48:6121–6126
PubMed
CAS
Google Scholar
Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Kranse JA, Sauer LA, Rivera-Bermudez MA, Dubocovich ML, Jasser SA, Lynch DT, Rollag MD, Zallatan F (2005) Melatonin depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 65:11174–11184. doi:10.1158/0008-5472.CAN-05-1945
PubMed
Article
CAS
Google Scholar
Dauchy RT, Dauchy EM, Sauer LA, Blask DE, Davidson LK, Krause JA, Lynch DT (2004) Differential inhibition of fatty acid transport in tissue-isolated steroid receptor negative human breast cancer xenografts perfused in situ with isomers of conjugated linoleic acid. Cancer Lett 209:7–15. doi:10.1016/j.canlet.2003.12.012
PubMed
Article
CAS
Google Scholar
Xi SC, Siu SW, Fong SW, Shiu SY (2001) Inhibition of androgen-sensitive LNCaP prostate cancer growth in vivo by melatonin: association of antiproliferative action of the pineal hormone with mt1 receptor protein expression. Prostate 46:52–61. doi:10.1002/1097-0045(200101)46:1<52:AID-PROS1008>3.0.CO;2-Z
PubMed
Article
CAS
Google Scholar
Sainz RM, Mayo JC, Tan DX, León J, Manchester L, Reiter RJ (2005) Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 63:29–43. doi:10.1002/pros.20155
PubMed
Article
CAS
Google Scholar
Karasek M, Carrillo-Vico A, Guerrero JM, Winczyk K, Pawlikowski M (2002) Expression of melatonin MT(1) and MT(2) receptors, and ROR alpha(1) receptor in transplantable murine Colon 38 cancer. Neuro Endocrinol Lett 23:55–60
PubMed
CAS
Google Scholar
Bartsch H, Buchberger A, Franz H, Bartsch C, Maidonis I, Mecke D, Bayer E (2000) Effect of melatonin and pineal extracts on human ovarian and mammary tumor cells in a chemosensitivity assay. Life Sci 67:2953–2960. doi:10.1016/S0024-3205(00)00882-1
PubMed
Article
CAS
Google Scholar
Kobayashi Y, Itoh MT, Kondo H, Okuma Y, Sato S, Kanishi Y, Hamada N, Kiguchi K, Ishizuka B (2003) Melatonin binding sites in estrogen receptor-positive cells derived from human endometrial cancer. J Pineal Res 35:71–74. doi:10.1046/j.1439-0434.2002.00691_2.x-i1
PubMed
CAS
Google Scholar
Blask DE, Dauchy RT, Sauer LA, Krause JA (2004) Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin. Carcinogenesis 25:951–960. doi:10.1093/carcin/bgh090
PubMed
Article
CAS
Google Scholar
Leja-Szpak A, Jaworek J, Pierzchalski P, Reiter RJ (2010) Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 49:248–255. doi:10.1111/j.1600-079X.2010.00789.x
PubMed
Article
CAS
Google Scholar
Ying SW, Niles LP, Crocker C (1993) Human malignant melanoma cells express high-affinity receptors for melatonin: antiproliferative effects of melatonin and 6-chloromelatonin. Eur J Pharmacol 246:89–96
PubMed
Article
CAS
Google Scholar
Kadekaro AL, Andrade LN, Floeter-Winter LM, Rollag MD, Virador V, Vieira W, Castrucci AM (2004) MT-1 melatonin receptor expression increases the antiproliferative effect of melatonin on S-91 murine melanoma cells. J Pineal Res 36:204–211. doi:10.1111/j.1600-079X.2004-00119.x
PubMed
Article
CAS
Google Scholar
Fischer TW, Zmijewski MA, Zbytek B, Sweatman TW, Slominski RM, Wortsman J, Slominski A (2006) Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int J Oncol 29:665–672
PubMed
CAS
Google Scholar
Nakamura E, Kozaki K, Tsuda H, Suzuki E, Pimkhaokham A, Yamamoto G, Irie T, Tachikawa T, Amagasa T, Inazawa J, Imoto I (2008) Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci 99:1390–1400. doi:10-1111/j.1349-7006.2008.00838.x
PubMed
Article
CAS
Google Scholar
Martín V, Herrera F, Carrera-Gonzalez P, García-Santos G, Antolín I, Rodriguez-Blanco J, Rodriguez C (2006) Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res 66:1081–1088. doi:10.1158/0008-5472.CAN-05-2354
PubMed
Article
Google Scholar
Mao L, Cheng Q, Guardiola-Lemaître B, Schuster-Klein C, Dong C, Lai L, Hill SM (2010) In vitro and in vivo antitumor activity of melatonin receptor agonists. J Pineal Res 49:210–221. doi:10.1111/j.1600-079X.2010.00781.x
PubMed
Article
CAS
Google Scholar
González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Mateos S, Hill SM, Sánchez-Barceló EJ, Cos S (2007) Effects of MT1 melatonin receptor overexpression on the aromatase-suppressive effect of melatonin in MCF-7 human breast cancer cells. Oncol Rep 17:947–953
PubMed
Google Scholar
Cos S, Sanchez-Barcelo E (1995) Melatonin inhibition of MCF-7 human breast cancer cells growth: influence of cell proliferation rate. Cancer Lett 93:207–212. doi:10.1016/0304-3835(96)03811-A
PubMed
Article
CAS
Google Scholar
Lai L, Yuan L, Cheng Q, Dong C, Mao L, Hill SM (2009) Alteration of the MT1 melatonin receptor gene and its expression in primary human breast tumors and breast cancer cell lines. Breast Cancer Res Treat 118:293–305. doi:10.1007/s10549-008-0220-1
PubMed
Article
CAS
Google Scholar
Blask DE, Hill SM, Orstead KM, Massa JS (1986) Inhibitory effects of the pineal hormone melatonin and underfeeding during the promotional phase of 7,12-dimethylbenzanthracene-(DMBA)-induced mammary tumorigenesis. J Neural Transm 67:125–138
PubMed
Article
CAS
Google Scholar
Blask DE, Sauer LA, Dauchy RT, Holowachuk EW, Ruhoff MS (1999) New insights into melatonin regulation of cancer growth. Adv Exp Med Biol 460:337–343
PubMed
Article
CAS
Google Scholar
Subramanian A, Kothari L (1991) Melatonin, a suppressor of spontaneous murine mammary tumors. J Pineal Res 10:136–140
PubMed
Article
CAS
Google Scholar
Sanchez-Barcelo EJ, Mediavilla MD, Tucker HA (1990) Influence of melatonin on mammary gland growth: in vivo and in vitro studies. Proc Soc Exp Biol Med 194:103–107
PubMed
CAS
Google Scholar
Ram PT, Dai J, Yuan L, Dong C, Kiefer TL, Lai L, Hill SM (2002) Involvement of the MT1 melatonin receptor in human breast cancer. Cancer Lett 179:141–150
PubMed
Article
CAS
Google Scholar
Kiefer T, Ram PT, Yuan L, Hill SM (2002) Melatonin inhibits estrogen receptor transactivation and cAMP levels in breast cancer cells. Breast Cancer Res Treat 71:37–45. doi:10.1023/A:1013301408464
PubMed
Article
CAS
Google Scholar
Brydon L, Roka F, Petit L, de Coppet P, Tissot M, Barrett P, Morgan PJ, Nanoff C, Strosberg AD, Jockers R (1999) Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3) and G(q/11) proteins. Mol Endocrinol 13:2025–2038. doi:10.1210/me.13.12.2005
PubMed
Article
CAS
Google Scholar
Dillon DC, Easley SE, Asch BB, Cheney RT, Brydon L, Jockers R, Winston JS, Brooks JS, Hurd T, Asch HL (2002) Differential expression of high-affinity melatonin receptors (MT1) in normal and malignant breast tissue. Am J Clin Pathol 118:451–458
PubMed
Article
CAS
Google Scholar
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. PNAS 100:8418–8423. doi:10.1073/pnas.0932692100
PubMed
Article
CAS
Google Scholar
Fadare O, Tavassoli FA (2007) The phenotypic spectrum of basal-like breast cancers: a critical appraisal (Review). Adv Anat Pathol 14:358–373. doi:10.1097/PAP.06013e31814b26fe
PubMed
Article
CAS
Google Scholar
Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948
PubMed
Article
CAS
Google Scholar
Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376. doi:10.1158/1078-0432.CCR-07-1658
PubMed
Article
CAS
Google Scholar
Lund MJ, Trivers KF, Porter PL, Coates RJ, Leyland-Jones B, Brawley OW, Flagg EW, O’Regan RM, Gabram SG, Eley JW (2009) Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res Treat 113:357–370. doi:10.1007/s10549-008-9926-3
PubMed
Article
Google Scholar
Lara-Medina F, Pérez-Sánchez V, Saavedra-Pérez D, Blake-Cerda M, Arce C, Motola-Kuba D, Villarreal-Garza C, González-Angulo AM, Bargalló E, Aguilar JL, Mohar A, Arrieta Ó (2011) Triple-negative breast cancer in Hispanic patients: high prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer 117:3658–3669. doi:10.1002/cncr.25961
PubMed
Article
Google Scholar
Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX (2009) Melatonin an established antioxidant worthy of use in clinical trials. Mol Med 15:43–50. doi:10.2119/molmed.2008.00117
PubMed
CAS
Google Scholar
Lissoni P, Meregalli S, Nosetto L, Barni S, Tancini G, Fossati V, Maestroni GJ (1996) Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology 53:43–46
PubMed
Article
CAS
Google Scholar
Lissoni P, Barni S, Mandalà M, Avdizzoia A, Paolorossi F, Vaghi M, Longarini R, Malugani F, Tancini G (1999) Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumor patients with poor clinical status. Eur J Cancer 35:1688–1692. doi:10.1016/S0959-8049(99)00159-8
PubMed
Article
CAS
Google Scholar
Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni GJ (2001) Anti-angiogenic activity of melatonin in advanced cancer patients. Neuro Endocrinol Lett 22:45–47
PubMed
CAS
Google Scholar
Panzer A, Viljoen M (1997) The validity of melatonin as an oncostatic agent. J Pineal Res 22:184–202
PubMed
Article
CAS
Google Scholar
Hrushesky WJM (2001) Melatonin in cancer therapy. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D (eds) The pineal gland and cancer. Spring, Berlin, pp 476–508
Chapter
Google Scholar
Contal C, O’Quigley J (1999) An application of changepoint methods in studying the effect of age on survival in breast cancer. Comp Stat Data Anal 30:253–270. doi:10.1016/S0167-9473(98)00096-6
Article
Google Scholar
Haybittle JL, Blamey RW, Elston CW, Johnson J, Doyle PJ, Campbell FC, Nicholson RI, Griffiths K (1982) A prognostic index in primary breast cancer. Br J Cancer 45:361–366
PubMed
Article
CAS
Google Scholar
Lund MJ, Butler EN, Bumpers HL, Okoli J, Rizzo M, Hatchett N, Green VL, Brawley OW, Oprea-Ilies GM, Gabram SG (2008) High prevalence of triple-negative tumors in an urban cancer center. Cancer 113:608–615. doi:10.1002/cncr.23569
PubMed
Article
Google Scholar
Lund MJ, Butler EN, Hair BY, Ward KC, Andrews JH, Oprea-Ilies G, Bayakly AR, O’Regan RM, Vertino PM, Eley JW (2010) Age/race differences in Her2 testing and in incidence rates for breast cancer triple subtypes: a population-based study and first report. Cancer 116:2549–2559. doi:10.1002/cncr.25016
PubMed
Google Scholar
Sullivan HC, Oprea G, Adams A, Page AJ, Cohen C (2012) Triple negative breast carcinoma in African American and Caucasian women: clinicopathology, immunomarkers, and outcome. Appl Immunohistochem Mol Morphol (in print)
Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi:10.1001/jama.295.21.2492
PubMed
Article
CAS
Google Scholar
Williams JD, Cohen C, Darrow M, Page AJ, Chastain B, Adams AL (2011) Proliferation (Ki-67 and phosphohistone H3) and oncotype Dx recurrence score in estrogen receptor-positive breast cancer. Appl Immunohistochem Mol Morphol 19:431–436. doi:10.1097/PAI.0b013e318206d23d
PubMed
Article
CAS
Google Scholar
Allison KH, Kandalaft PL, Sitlani CM, Dintzis SM, Gown AM (2012) Routine pathologic parameters can predict oncotype Dx recurrence scores in subsets of ER positive patients who does not always need testing. Breast Cancer Res Treat 131:413–424. doi:10.1007/s10549-011-1416-3
PubMed
Article
CAS
Google Scholar
Tischkowitz M, Brunet J-S, Bégin LR, Huntsman DG, Cheang MC, Akslen LA, Nielsen TO, Foulkes WD (2007) Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer 7:134. doi:10.1186/1471-2407-7-134
PubMed
Article
Google Scholar
Schernhammer ES, Hankinson SE (2005) Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst 97:1084–1087. doi:10.1093/jnci/dji190
PubMed
Article
CAS
Google Scholar
Stevens RG (1987) Electric power use and breast cancer: a hypothesis (Review and Commentary). Am J Epidemiol 125:556–561
PubMed
CAS
Google Scholar
Stevens RG (2009) Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol 38:963–970. doi:10.1093/ije/dyp178
PubMed
Article
Google Scholar
Costa G, Haus E, Stevens R (2010) Shift work and cancer—considerations on rationale, mechanisms, and epidemiology. Scand J Work Environ Health 36:163–179. doi:10.5271/sjweh.2899
PubMed
Article
Google Scholar
International Agency for Research in Cancer (IARC) (2010) Monographs on the evaluation of carcinogenic risks to humans, vol 98: painting, firefighting and shiftwork. IARC, Lyon
Harth V, Bruning T, Rabstein S, Spickenheuser A, Bonberg N, Pesch B, Pallapies D (2011) Night-work and estrogen receptor status. In: Proceedings of the 20th international symposium on shiftwork and working time, Stockholm, Sweden, 28 June–1 July 2011
Danforth DN Jr, Tamarkin L, Mulvihill JJ, Bagley CS, Lippman ME (1985) Plasma melatonin and the hormone-dependency of human breast cancer. J Clin Oncol 3:941–948
PubMed
Google Scholar
Hill SM, Blask DE, Xiang S, Yuan L, Mao L, Dauchy RT, Dauchy EM, Frasch T, Duplesis T (2011) Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer (Review). J Mammary Gland Biol Neoplasia 16:235–245. doi:10.1007/S10911-011-9222-4
PubMed
Article
Google Scholar
Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L, Duplessis T, Mao L, Dauchy E, Sauer LA (2011) Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res 51:259–269. doi:10.1111/j.1600-079X.2011.00888.x
PubMed
Article
CAS
Google Scholar
Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem 17:4462–4481
PubMed
Article
CAS
Google Scholar
Girgert R, Hanf V, Emons G, Gründker C (2009) Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells. J Pineal Res 47:23–31. doi:10.1111/j.1600-079X.2009.00684.x
PubMed
Article
CAS
Google Scholar
Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM (2002) MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol 192:147–156. doi:10.1016/S0303-7207(02)00029-1
PubMed
Article
CAS
Google Scholar
Collins A, Yuan L, Kiefer TL, Cheng Q, Lai L, Hill SM (2003) Over-expression of the MT1 melatonin receptor in MCF-7 human breast cancer cells inhibits mammary tumor formation in nude mice. Cancer Lett 189:49–57
PubMed
Article
CAS
Google Scholar
Rivara S, Mor M, Bedini A, Spadoni G, Tavzia G (2008) Melatonin receptor agonists: SAR and applications to the treatment of sleep-wake disorders (Review). Curr Top Med Chem 8:954–968
PubMed
Article
CAS
Google Scholar
Rajaratnam SMW, Polymeropoulos MH, Fisher DM, Roth T, Scott C, Birznieks G, Klerman EB (2009) Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomized controlled multicenter trials. Lancet 373:482–491. doi:10.1016/S0140-6736(08)61812-7
PubMed
Article
CAS
Google Scholar
Jawed S, Kim B, Ottenhof T, Brown GM, Werstiuk ES, Niles LP (2007) Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation. Eur J Pharmacol 560:17–22. doi:10.1016/j.ejphar.2007.01.022
PubMed
Article
CAS
Google Scholar
Cinatl J Jr, Cinatl J, Driever PH, Kotchetkov R, Pouckova P, Kornhuber B, Schwabe D (1997) Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs 8:958–963
PubMed
Article
CAS
Google Scholar
Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978. doi:10.1093/emboj/20.24.6969
PubMed
Article
Google Scholar
Olsen CM, Meussen-Elholm ET, Røste LS, Taubøll E (2004) Antiepileptic drugs inhibit cell growth in the human breast cancer cell line MCF7. Mol Cell Endocrinol 213:173–179. doi:10.1016/j.mce.2003.10.032
PubMed
Article
CAS
Google Scholar
Jung M (2001) Inhibitors of histone deacetylase as new anticancer agents (Review). Curr Med Chem 8:1505–1511
PubMed
Article
CAS
Google Scholar
Blaheta RA, Cinatl J Jr (2002) Anti-tumor mechanisms of valproate: a novel role for an old drug. Med Res Rev 22:492–511. doi:10.1002/med.10017
PubMed
Article
CAS
Google Scholar
Wang YM, Jin BZ, Ai F, Duan CH, Lu YZ, Dong TF, Fu QL (2012) The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemother Pharmacol 69:1213–1220. doi:10.1007/s00280-012-1828-8
PubMed
Article
CAS
Google Scholar
Seely D, Wu P, Fritz H, Kennedy DA, Tsui T, Seely AJ, Mills E (2011) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther. doi:10.1177/1534735411425484
Carillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27(2):189–200. doi:10.1385/ENDO:27:2:189
Article
Google Scholar