Skip to main content
Log in

Pre-attentive Spectro-temporal Feature Processing in the Human Auditory System

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In the present study, we investigated the pre-attentive processing of low-level acoustic properties and the impact of this mechanism on functional lateralization in the human auditory system. Mismatch negativity (MMN) of the event-related potentials (ERP) were recorded in 19 adult humans who passively listened to a standard stimulus and spectrally and temporally deviant sounds. We predicted modulations of the MMN amplitude in response to spectrally and temporally graded deviants. Based on recent models of functional hemispheric lateralisation, we further hypothesized a left-lateralized source of the MMN in response to temporal deviants and, in contrast, a right-lateralized source of the MMN in response to spectral deviants. In agreement with our hypothesis, we showed that spectrally and temporally deviant sounds lead to robust MMNs recorded from frontocentral scalp electrodes. The amplitudes of the MMNs were modulated by the grade of spectral and temporal deviation from the standard sound. Furthermore, by using an assumption-free source localization approach (LORETA) we demonstrated functionally lateralized activations with dominance of the right hemisphere for the processing of spectral characteristics and of the left hemisphere for the processing of temporal acoustic properties. Results of our study further contribute to the ongoing debate on the role of low-level acoustic feature perception in functional hemispheric lateralization in the context of auditory and speech processing. Our data indicate that the pre-attentive feature-specific deviant processing is mediated by partly distinct neural subsystems for temporal and spectral information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babajani-Feremi A, Soltanian-Zadeh H, Moran JE (2008) Integrated MEG/fMRI model validated using real auditory data. Brain Topogr. 21:61–74

    Article  PubMed  Google Scholar 

  • Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10:536–540

    Article  PubMed  CAS  Google Scholar 

  • Bertoli S, Heimberg S, Smurzynski J, Probst R (2001) Mismatch negativity and psychoacoustic measures of gap detection in normally hearing subjects. Psychophysiology 38:334–342

    Article  PubMed  CAS  Google Scholar 

  • Bertoli S, Smurzynski J, Probst R (2002) Temporal resolution in young and elderly subjects as measured by mismatch negativity and a psychoacoustic gap detection task. Clin. Neurophysiol. 113:396–406

    Article  PubMed  Google Scholar 

  • Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci. 8:389–395

    Article  PubMed  CAS  Google Scholar 

  • Caclin A, Brattico E, Tervaniemi M, Naatanen R, Morlet D, Giard MH, McAdams S (2006) Separate neural processing of timbre dimensions in auditory sensory memory. J Cogn Neurosci 18:1959–1972

    Article  PubMed  Google Scholar 

  • Desjardins RN, Trainor LJ, Hevenor SJ, Polak CP (1999) Using mismatch negativity to measure auditory temporal resolution thresholds. NeuroReport 10:2079–2082

    Article  PubMed  CAS  Google Scholar 

  • Dick F, Saygin AP, Galati G, Pitzalis S, Bentrovato S, D’Amico S, Wilson S, Bates E, Pizzamiglio L (2007) What is involved and what is necessary for complex linguistic and nonlinguistic auditory processing: evidence from functional magnetic resonance imaging and lesion data. J Cogn Neurosci 19:799–816

    Article  PubMed  Google Scholar 

  • Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, Schroger E (2003) Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence. Neuroimage 20:1270–1282

    Article  PubMed  Google Scholar 

  • Efron R (1963) Temporal perception, Aphasia and Déjà vu. Brain 86:403–424

    Article  PubMed  CAS  Google Scholar 

  • Escera C, Alho K, Winkler I, Naatanen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604

    Article  PubMed  CAS  Google Scholar 

  • Escera C, Alho K, Schroger E, Winkler I (2000) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166

    Article  PubMed  CAS  Google Scholar 

  • Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right-left asymmetrics in the brain. Science 199:852–856

    Article  PubMed  CAS  Google Scholar 

  • Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640

    Article  PubMed  CAS  Google Scholar 

  • Giraud K, Demonet JF, Habib M, Marquis P, Chauvel P, Liegeois-Chauvel C (2005) Auditory evoked potential patterns to voiced and voiceless speech sounds in adult developmental dyslexics with persistent deficits. Cereb Cortex 15:1524–1534

    Article  PubMed  CAS  Google Scholar 

  • Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Gottselig JM, Brandeis D, Hofer-Tinguely G, Borbely AA, Achermann P (2004) Human central auditory plasticity associated with tone sequence learning. Learn Mem 11:162–171

    Article  PubMed  Google Scholar 

  • Grimm S, Schroger E (2007) The processing of frequency deviations within sounds: evidence for the predictive nature of the Mismatch Negativity (MMN) system. Restor Neurol Neurosci 25:241–249

    PubMed  Google Scholar 

  • Grimm S, Roeber U, Trujillo-Barreto NJ, Schroger E (2006) Mechanisms for detecting auditory temporal and spectral deviations operate over similar time windows but are divided differently between the two hemispheres. Neuroimage 32:275–282

    Article  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Martuzzi R, Maeder P, Clarke S, Thiran JP, Meuli R (2006) Hand preference and sex shape the architecture of language networks. Hum Brain Mapp 27:828–835

    Article  PubMed  Google Scholar 

  • Horvath J, Czigler I, Jacobsen T, Maess B, Schroger E, Winkler I (2008) MMN or no MMN: no magnitude of deviance effect on the MMN amplitude. Psychophysiology 45:60–69

    PubMed  Google Scholar 

  • Jacobsen T, Schroger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727

    Article  PubMed  CAS  Google Scholar 

  • Jamison HL, Watkins KE, Bishop DV, Matthews PM (2006) Hemispheric specialization for processing auditory nonspeech stimuli. Cereb Cortex 16:1266–1275

    Article  PubMed  Google Scholar 

  • Jancke L, Wustenberg T, Scheich H, Heinze HJ (2002) Phonetic perception and the temporal cortex. Neuroimage 15:733–746

    Article  PubMed  CAS  Google Scholar 

  • Jankowiak S, Berti S (2007) Behavioral and event-related potential distraction effects with regularly occurring auditory deviants. Psychophysiology 44:79–85

    Article  PubMed  Google Scholar 

  • Johnsrude IS, Penhune VB, Zatorre RJ (2000) Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123(Pt 1):155–163

    Article  PubMed  Google Scholar 

  • Liegeois-Chauvel C, de Graaf JB, Laguitton V, Chauvel P (1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb Cortex 9:484–496

    Article  PubMed  CAS  Google Scholar 

  • Meyer M (2008) Functions of the left and right posterior temporal lobes during segmental and suprasegmental speech perception. Zeitschrift für Neuropsychologie 19:101–115

    Article  Google Scholar 

  • Meyer M, Alter K, Friederici AD, Lohmann G, von Cramon DY (2002) FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum Brain Mapp 17:73–88

    Article  PubMed  Google Scholar 

  • Meyer M, Zaehle T, Gountouna VE, Barron A, Jancke L, Turk A (2005) Spectro-temporal processing during speech perception involves left posterior auditory cortex. NeuroReport 16:1985–1989

    Article  PubMed  Google Scholar 

  • Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15:545–551

    Article  PubMed  Google Scholar 

  • Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    Article  PubMed  Google Scholar 

  • Naatanen R, Alho K (1995a) Mismatch negativity—a unique measure of sensory processing in audition. Int J Neurosci 80:317–337

    Article  PubMed  CAS  Google Scholar 

  • Naatanen R, Alho K (1995b) Generators of electrical and magnetic mismatch responses in humans. Brain Topogr 7:315–320

    Article  PubMed  CAS  Google Scholar 

  • Naatanen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144

    Article  PubMed  Google Scholar 

  • Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    Article  PubMed  CAS  Google Scholar 

  • Nicholls ME (1996) Temporal processing asymmetries between the cerebral hemispheres: evidence and implications. Laterality 1:97–137

    Article  PubMed  CAS  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  PubMed  Google Scholar 

  • Obleser J, Rockstroh B, Eulitz C (2004) Gender differences in hemispheric asymmetry of syllable processing: left-lateralized magnetic N100 varies with syllable categorization in females. Psychophysiology 41:783–788

    Article  PubMed  Google Scholar 

  • Obleser J, Eisner F, Kotz SA (2008) Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. J Neurosci 28:8116–8123

    Article  PubMed  CAS  Google Scholar 

  • Opitz B, Mecklinger A, von Cramon DY, Kruggel F (1999) Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology 36:142–147

    Article  PubMed  CAS  Google Scholar 

  • Overath T, Kumar S, von KK, Griffiths TD (2008) Encoding of spectral correlation over time in auditory cortex. J Neurosci 28:13268–13273

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95

    PubMed  Google Scholar 

  • Phillips DP, Smith JC (2004) Correlations among within-channel and between-channel auditory gap-detection thresholds in normal listeners. Perception 33:371–378

    Article  PubMed  Google Scholar 

  • Phillips DP, Taylor TL, Hall SE, Carr MM, Mossop JE (1997) Detection of silent intervals between noises activating different perceptual channels: some properties of “central” auditory gap detection. J Acoust Soc Am 101:3694–3705

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Hall SE, Harrington IA, Taylor TL (1998) “Central” auditory gap detection: a spatial case. J Acoust Soc Am 103:2064–2068

    Article  PubMed  CAS  Google Scholar 

  • Phillips C, Rugg MD, Friston KJ (2002a) Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. Neuroimage 16:678–695

    Article  PubMed  Google Scholar 

  • Phillips C, Rugg MD, Fristont KJ (2002b) Systematic regularization of linear inverse solutions of the EEG source localization problem. Neuroimage 17:287–301

    Article  PubMed  Google Scholar 

  • Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139

    Article  PubMed  CAS  Google Scholar 

  • Poeppel D (2001) Pure word deafness and the bilateral processing of the speech code. Cogn Sci 25:679–693

    Article  Google Scholar 

  • Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41:245–255

    Article  Google Scholar 

  • Poeppel D, Yellin E, Phillips C, Roberts TP, Rowley HA, Wexler K, Marantz A (1996) Task-induced asymmetry of the auditory evoked M100 neuromagnetic field elicited by speech sounds. Brain Res Cogn Brain Res 4:231–242

    Article  PubMed  CAS  Google Scholar 

  • Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30:823–838

    Article  PubMed  Google Scholar 

  • Ross ED (1981) The aprosodias. Functional-anatomic organization of the affective components of language in the right hemisphere. Arch Neurol 38:561–569

    PubMed  CAS  Google Scholar 

  • Sams M, Paavilainen P, Alho K, Naatanen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62:437–448

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CF, Zaehle T, Meyer M, Geiser E, Boesiger P, Jancke L (2008) Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task. Hum Brain Mapp 29:46–56

    Article  PubMed  Google Scholar 

  • Schonwiesner M, Rubsamen R, von Cramon DY (2005) Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. Eur J NeuroSci 22:1521–1528

    Article  PubMed  Google Scholar 

  • Schroger E, Wolff C (1996) Mismatch response of the human brain to changes in sound location. NeuroReport 7:3005–3008

    Article  PubMed  CAS  Google Scholar 

  • Schroger E, Wolff C (1998) Attentional orienting and reorienting is indicated by human event-related brain potentials. NeuroReport 9:3355–3358

    PubMed  CAS  Google Scholar 

  • Scott SK, Blank CC, Rosen S, Wise RJ (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123(Pt 12):2400–2406

    Article  PubMed  Google Scholar 

  • Shahin AJ, Roberts LE, Miller LM, McDonald KL, Alain C (2007) Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds. Brain Topogr 20:55–61

    Article  PubMed  Google Scholar 

  • Shaywitz BA, Shaywitz SE, Pugh KR, Constable RT, Skudlarski P, Fulbright RK, Bronen RA, Fletcher JM, Shankweiler DP, Katz L (1995) Sex differences in the functional organization of the brain for language. Nature 373:607–609

    Article  PubMed  CAS  Google Scholar 

  • Shtyrov Y, Kujala T, Palva S, Ilmoniemi RJ, Naatanen R (2000) Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres. Neuroimage 12:657–663

    Article  PubMed  CAS  Google Scholar 

  • Sieroka N, Dosch HG, Specht HJ, Rupp A (2003) Additional neuromagnetic source activity outside the auditory cortex in duration discrimination correlates with behavioural ability. Neuroimage 20:1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Sommer IE, Aleman A, Bouma A, Kahn RS (2004) Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies. Brain 127:1845–1852

    Article  PubMed  Google Scholar 

  • Sommer IE, Aleman A, Somers M, Boks MP, Kahn RS (2008) Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Res 1206:76–88

    Article  PubMed  CAS  Google Scholar 

  • Studdert-Kennedy M, Shankweiler D (1981) Hemispheric specialization for language processes. Science 211:960–961

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-palanar stereotaxis atlas of the human brain. Thieme, New York

    Google Scholar 

  • Tervaniemi M, Winkler I, Naatanen R (1997) Pre-attentive categorization of sounds by timbre as revealed by event-related potentials. NeuroReport 8:2571–2574

    Article  PubMed  CAS  Google Scholar 

  • Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi RJ, Naatanen R (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9:330–336

    Article  PubMed  CAS  Google Scholar 

  • Trainor LJ, Samuel SS, Desjardins RN, Sonnadara RR (2001) Measuring temporal resolution in infants using mismatch negativity. NeuroReport 12:2443–2448

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    Article  PubMed  CAS  Google Scholar 

  • Uther M, Jansen DH, Huotilainen M, Ilmoniemi RJ, Naatanen R (2003) Mismatch negativity indexes auditory temporal resolution: evidence from event-related potential (ERP) and event-related field (ERF) recordings. Brain Res Cogn Brain Res 17:685–691

    Article  PubMed  CAS  Google Scholar 

  • Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256

    Article  PubMed  CAS  Google Scholar 

  • Von Steinbuchel N (1998) Temporal ranges of central nervous processing: clinical evidence. Exp Brain Res 123:220–233

    Article  Google Scholar 

  • Vouloumanos A, Kiehl KA, Werker JF, Liddle PF (2001) Detection of sounds in the auditory stream: event-related fMRI evidence for differential activation to speech and nonspeech. J Cogn Neurosci 13:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Wallentin M (2009) Putative sex differences in verbal abilities and language cortex: a critical review. Brain Lang 108:175–183

    Article  PubMed  Google Scholar 

  • Weintraub S, Mesulam MM, Kramer L (1981) Disturbances in prosody. A right-hemisphere contribution to language. Arch Neurol 38:742–744

    PubMed  CAS  Google Scholar 

  • Wetzel W, Ohl FW, Scheich H (2008) Global versus local processing of frequency-modulated tones in gerbils: an animal model of lateralized auditory cortex functions. Proc Natl Acad Sci USA 105:6753–6758

    Article  PubMed  CAS  Google Scholar 

  • Woods DL (1990) The physiological basis of selective attention: Implications of event-related potential studies. In: Rohrbaugh JW, Parasuraman R, Johnson R Jr (eds) Event-related potentials: basic issues and applications. Oxford University Press, New York, pp 178–209

    Google Scholar 

  • Yabe H, Tervaniemi M, Reinikainen K, Naatanen R (1997) Temporal window of integration revealed by MMN to sound omission. NeuroReport 8:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Zaehle T, Wustenberg T, Meyer M, Jancke L (2004) Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. Eur J NeuroSci 20:2447–2456

    Article  PubMed  CAS  Google Scholar 

  • Zaehle T, Jancke L, Meyer M (2007a) Electrical brain imaging evidences left auditory cortex involvement in speech and non-speech discrimination based on temporal features. Behav Brain Funct 3:63

    Article  PubMed  Google Scholar 

  • Zaehle T, Schmidt CF, Meyer M, Baumann S, Baltes C, Boesiger P, Jancke L (2007b) Comparison of “silent” clustered and sparse temporal fMRI acquisitions in tonal and speech perception tasks. Neuroimage 37:1195–1204

    Article  PubMed  Google Scholar 

  • Zaehle T, Geiser E, Alter K, Jancke L, Meyer M (2008) Segmental processing in the human auditory dorsal stream. Brain Res 1220:179–190

    Article  PubMed  CAS  Google Scholar 

  • Zatorre RJ (1988) Pitch perception of complex tones and human temporal-lobe function. J Acoust Soc Am 84:566–572

    Article  PubMed  CAS  Google Scholar 

  • Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953

    Article  PubMed  CAS  Google Scholar 

  • Zatorre RJ, Gandour JT (2008) Neural specializations for speech and pitch: moving beyond the dichotomies. Philos Trans R Soc Lond B Biol Sci 363:1087–1104

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Thomas Jacobsen and Marcus Cheetham, as well as three anonymous reviewers for their helpful comments on previous version of the manuscript. This work was supported by Swiss National Science Foundation Grant No.: 320000-120661/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Zaehle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaehle, T., Jancke, L., Herrmann, C.S. et al. Pre-attentive Spectro-temporal Feature Processing in the Human Auditory System. Brain Topogr 22, 97–108 (2009). https://doi.org/10.1007/s10548-009-0085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-009-0085-6

Keywords

Navigation