Skip to main content
Log in

Sensitivity of EEG and MEG to the N1 and P2 Auditory Evoked Responses Modulated by Spectral Complexity of Sounds

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Acoustic complexity of a stimulus has been shown to modulate the electromagnetic N1 (latency ∼110 ms) and P2 (latency 190 ms) auditory evoked responses. We compared the relative sensitivity of electroencephalography (EEG) and magnetoencephalography (MEG) to these neural correlates of sensation. Simultaneous EEG and MEG were recorded while participants listened to three variants of a piano tone. The piano stimuli differed in their number of harmonics: the fundamental frequency (f 0 ), only, or f 0 and the first two or eight harmonics. The root mean square (RMS) of the amplitude of P2 but not N1 increased with spectral complexity of the piano tones in EEG and MEG. The RMS increase for P2 was more prominent in EEG than MEG, suggesting important radial sources contributing to the P2 only in EEG. Source analysis revealing contributions from radial and tangential sources was conducted to test this hypothesis. Source waveforms revealed a significant increase in the P2 radial source amplitude in EEG with increased spectral complexity of piano tones. The P2 of the tangential source waveforms also increased in amplitude with increased spectral complexity in EEG and MEG. The P2␣auditory evoked response is thus represented by both tangential (gyri) and radial (sulci) activities. The radial contribution is expressed preferentially in EEG, highlighting the importance of combining EEG with MEG where complex source configurations are suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hämäläinen M, Hari R, Ilmoniemi RJ, Kunuutila J, Lounasmaa OV. Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Modern Phys 1993;65:413–97.

    Article  Google Scholar 

  2. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. New York, NY: Oxford University Press; 2006.

    Google Scholar 

  3. Neukirch M, Hegerl U, Kotitz R, Dorn H, Gallinat J, Herrmann WM. Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components. Neuropsychobiology 2002;45:41–8.

    Article  PubMed  CAS  Google Scholar 

  4. Cuffin BN, Cohen D. Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 1979;47:132–46.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen D, Cuffin BN. Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 1983;56:38–51.

    Article  PubMed  CAS  Google Scholar 

  6. Phillips JW, Leahy RM, Mosher JC, Timsari B. Imaging neural activity using MEG and EEG. IEEE Eng Med Biol Mag 1997;16:34–42.

    Article  PubMed  CAS  Google Scholar 

  7. Barkley GL. Controversies in neurophysiology. MEG is superior to EEG in localization of interictal epileptiform activity. Pro Clin Neurophysiol 2004;115:1001–9.

    Article  Google Scholar 

  8. Baumgartner C. Controversies in clinical neurophysiology. MEG is superior to EEG in the localization of interictal epileptiform activity. Con Clin Neurophysiol 2004;115:1010–20.

    Article  Google Scholar 

  9. Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol 1998;107:159–73.

    Article  PubMed  CAS  Google Scholar 

  10. Scherg M, Vajsar J, Picton TW. A source analysis of the late human auditory evoked potentials. J Cogn Neurosci 1989;1: 336–55.

    Article  Google Scholar 

  11. Picton TW, Alain C, Woods DL, John MS, Scherg M, Valdes-Sosa P, Bosch-Bayard J, Trujillo NJ. Intracerebral sources of human auditory evoked potentials. Audiol Neurootol 1999;4: 64–79.

    Article  PubMed  CAS  Google Scholar 

  12. Shahin A, Bosnyak DJ, Trainor LJ, Roberts LE. Enhancement of neuroplastic P2 and N1c auditory evoked potentials in skilled musicians. J Neurosci 2003;23:5545–52.

    PubMed  CAS  Google Scholar 

  13. Shahin A, Roberts LE, Pantev C, Trainor LJ, Ross B. Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. Neuroreport 2005;16:1781–5.

    Article  PubMed  Google Scholar 

  14. Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G, Elbert T. Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 1995;94:26–40.

    Article  PubMed  CAS  Google Scholar 

  15. Siedenberg R, Goodin DS, Aminoff MJ, Rowley HA, Roberts TP. Comparison of late components in simultaneously recorded event-related electrical potentials and event-related magnetic fields. Electroencephalogr Clin Neurophysiol 1996;99:191–7.

    Article  PubMed  CAS  Google Scholar 

  16. Huotilainen M, Winkler I, Alho K, Escera C, Virtanen J, Ilmoniemi RJ, Jääskeläinen IP, Pekkonen E, Näätänen R. Combined mapping of human auditory EEG and MEG responses. Electroencephalogr Clin Neurophysiol 1998;108:370–9.

    Article  PubMed  CAS  Google Scholar 

  17. Surwillo WW. Cortical evoked potentials in monozygotic twins and unrelated subjects: comparisons of exogenous and endogenous components. Behav Genet 1980;10:201–9.

    Article  PubMed  CAS  Google Scholar 

  18. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol 1992;9:456–79.

    Article  PubMed  CAS  Google Scholar 

  19. Scherg M. Fundamentals of dipole source potential analysis. In: Grandori F, Hoke M, Romani GL, editors. Auditory evoked magnetic fields and electric potentials. Advances in audiology, vol. 6. Basel: Karger; 1990. pp. 40–69.

    Google Scholar 

  20. Helmholz H. Ueber einiger gezetze der vertailung elektrischer strome in korperlichen leiter mit anwendungauf die thierishch electrischeb versuche. Pogg Ann Physik Chemie 1853;33: 353–77.

    Article  Google Scholar 

  21. Oosterom AV. History and evaluation of methods for solving the inverse problem. J Clin Neurophysiol 1991;8:371–80.

    PubMed  Google Scholar 

  22. Lütkenhöner B, Steinstrater O. High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootol 1998;3:191–213.

    Article  PubMed  Google Scholar 

  23. Seither-Preisler A, Krumbholz K, Lütkenhöner B. Sensitivity of the neuromagnetic N100m deflection to spectral bandwidth: a function of the auditory periphery? Audiol Neurootol 2003;8:322–37.

    Article  PubMed  CAS  Google Scholar 

  24. Hari R, Pelizzone M, Mäkelä JP, Hallstrom J, Leinonen L, Lounasmaa OV. Neuromagnetic responses of the human auditory cortex to on- and offsets of noise bursts. Audiology 1987;26: 31–43.

    PubMed  CAS  Google Scholar 

  25. Pantev C, Eulitz C, Hampson S, Ross B, Roberts LE. The auditory evoked “off” response: sources and comparison with the “on” and the “sustained” responses. Ear Hear 1996;17: 255–65.

    Article  PubMed  CAS  Google Scholar 

  26. Engelien A, Schulz M, Ross B, Arolt V, Pantev, C. A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 2000;148:153–60.

    Article  PubMed  CAS  Google Scholar 

  27. Yvert B, Fischer C, Bertrand O, Pernier J. Localization of human supratemporal auditory areas form intracerebral auditory evoked potentials using distributed source models. Neuroimage 2005;28: 140–53.

    Article  PubMed  Google Scholar 

  28. Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K. Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 2001;13:669–83.

    Article  PubMed  CAS  Google Scholar 

  29. Penhune VB, Zatorre RJ, MacDonald JD, Evans AC. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 1996;6:661–72.

    Article  PubMed  CAS  Google Scholar 

  30. Mäkelä JP, Hämäläinen M, Hari R, McEvoy L. Whole-head mapping of middle-latency auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 1994;92:414–21.

    PubMed  Google Scholar 

  31. Menning H, Roberts LE, Pantev C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 2000;11:817–22.

    Article  PubMed  CAS  Google Scholar 

  32. Tremblay K, Kraus N, McGee T, Ponton C, Otis B. Central auditory plasticity: changes in the N1–P2 complex after speech-sound training. Ear Hear 2001;22:79–90.

    Article  PubMed  CAS  Google Scholar 

  33. Reinke KS, He Y, Wang C, Alain C. Perceptual learning modulates sensory evoked response during vowel segregation. Brain Res Cogn Brain Res 2003;17:781–91.

    Article  PubMed  Google Scholar 

  34. Bosnyak DJ, Eaton RA, Roberts LE. Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cereb Cortex 2004;14:1088–99.

    Article  PubMed  Google Scholar 

  35. Ponton CW, Eggermont JJ, Kwong B, Don M. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol 2000;111:220–36.

    Article  PubMed  CAS  Google Scholar 

  36. Shahin A, Roberts LE, Trainor LJ. Enhancement of auditory cortical development by musical experience in children. Neuroreport 2004;15:1917–21.

    Article  PubMed  Google Scholar 

  37. Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 1995;268:111–4.

    Article  PubMed  CAS  Google Scholar 

  38. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP. Functional specialization in rhesus monkey auditory cortex. Science 2001;292:290–3.

    Article  PubMed  CAS  Google Scholar 

  39. Cohen D, Cuffin BN, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR, Ives J, Kennedy JG, Schomer DL. MEG versus EEG localization test using implanted sources in the human brain. Ann Neurol 1990;28:811–7.

    Article  PubMed  CAS  Google Scholar 

  40. Crease RP. Images of conflict: MEG vs. EEG. Science 1991;253:374–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the International Foundation for Music Research. We wish to thank Dr. Christo Pantev, Dr. Bernhard Ross, Dr. Laurel Trainor and Kristina Backer for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine J. Shahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahin, A.J., Roberts, L.E., Miller, L.M. et al. Sensitivity of EEG and MEG to the N1 and P2 Auditory Evoked Responses Modulated by Spectral Complexity of Sounds. Brain Topogr 20, 55–61 (2007). https://doi.org/10.1007/s10548-007-0031-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-007-0031-4

Keywords

Navigation