Skip to main content
Log in

Boundary-Layer Processes Hindering Contemporary Numerical Weather Prediction Models

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Time integration of the unsteady Reynolds-averaged Navier–Stokes (URANS) equations is the principal approach used in numerical weather prediction. This approach represents a balanced compromise between accuracy and computational cost. The URANS equations require the flow to be decomposed into an ensemble mean and excursions that are presumed to be entirely related to turbulence, thereby enabling conventional closure schemes to be used to describe their statistics. Implicit in such a decomposition is the assumption of a spectral gap between the unsteadiness in the mean flow and the scales of turbulence. Modelling challenges arise when some of the unresolved fluctuations are related to non-turbulent, structured motions that can also blur the spectral gap and render conventional closure schemes ineffective. This work seeks to clarify modelling issues that occur when unresolved fluctuations include submesoscale motions and persistent secondary circulations related to surface heterogeneities. Because submeso motions and persistent secondary circulations are not random, new theoretical tactics are discussed to represent their effects on URANS transport. By reviewing the interpretation of fluctuating terms in the URANS equations, we suggest the use of large-eddy simulations, direct numerical simulations and field measurements to guide the development of closure schemes that explicitly include fluxes due to submeso motions and persistent secondary circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

The data used in the manuscript is minimal and comes mostly from previous publications, as indicated through corresponding citations where used. Data from the numerical simulations could be made available upon direct request to the authors.

References

  • Anfossi D, Oettl D, Degrazia G, Goulart A (2005) An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorol 114(1):179–203

    Article  Google Scholar 

  • Avissar R, Chen F (1993) Development and analysis of prognostic equations for mesoscale kinetic-energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models. J Atmos Sci 50(22):3751–3774. https://doi.org/10.1175/1520-0469(1993)050$<$3751:DAAOPE$>$2.0.CO;2

  • Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55:2666–2689

    Article  Google Scholar 

  • Belušić D, Güttler I (2010) Can mesoscale models reproduce meandering motions? Q J R Meteorol Soc 136(648):553–565

    Google Scholar 

  • Bhattacharya R, Stevens B (2016) A two Turbulence Kinetic Energy model as a scale-adaptive approach to modeling the planetary boundary layer. J Adv Model Earth Syst 8(1):224–243

    Article  Google Scholar 

  • Bou-Zeid E, Anderson W, Katul GG, Mahrt L (2020) The persistent challenge of surface heterogeneity in boundary-layer meteorology: a review. Boundary-Layer Meteorol 177:227–245. https://doi.org/10.1007/s10546-020-00551-8

    Article  Google Scholar 

  • Boyko V, Vercauteren N (2021) Multiscale shear forcing of turbulence in the nocturnal boundary layer: a statistical analysis. Boundary-Layer Meteorol 179(1):43–72

    Article  Google Scholar 

  • Boyko V, Krumscheid S, Vercauteren N (2021) Statistical learning of non-linear stochastic differential equations from non-stationary time-series using variational clustering. arXiv:2102.12395 [math]

  • Brutsaert W (1982) Evaporation into the atmosphere. Theory, history, and applications, 1st edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Boundary-Layer Meteorol 112(1):129–157

    Article  Google Scholar 

  • Cava D, Mortarini L, Giostra U, Richiardone R, Anfossi D (2016) A wavelet analysis of low-wind-speed submeso motions in a nocturnal boundary layer. Q J R Meteorol Soc 143(703):661–669

    Article  Google Scholar 

  • Cava D, Mortarini L, Anfossi D, Giostra U (2019) Interaction of submeso motions in the antarctic stable boundary layer. Boundary-Layer Meteorol 171(2):151–173

    Article  Google Scholar 

  • Chow FK, Weigel AP, Street RL, Rotach MW, Xue M (2006) High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: methodology, verification, and sensitivity experiments. J Appl Meteorol Climatol 45(1):63–86

    Article  Google Scholar 

  • Christen A, Meier F, Scherer D (2011) High-frequency fluctuations of surface temperatures in an urban environment. Theoret Appl Climatol 108(1–2):301–324. https://doi.org/10.1007/s00704-011-0521-x

    Article  Google Scholar 

  • Christensen HM (2020) Constraining stochastic parametrisation schemes using high-resolution simulations. Q J R Meteorol Soc 146(727):938–962. https://doi.org/10.1002/qj.3717

    Article  Google Scholar 

  • Desai A, Davis KJ, Senff CJ, Ismail S, Browell EV, Stauffer DR, Reen BP (2006) A case study on the effects of heterogeneous soil moisture on mesoscale boundary-layer structure in the southern great plains, USA. Part I: simple prognostic model. Boundary-Layer Meteorol 119:195–238

    Article  Google Scholar 

  • Desai A, Schwartz M, Mauder M, Metzger S, Pertzborn R (2019) The chequamegon heterogeneous ecosystem energy-balance study enabled by a high-density extensive array of detectors (cheesehead)

  • Douville H (2010) Relative contribution of soil moisture and snow mass to seasonal climate predictability: a pilot study. Clim Dyn 34:797–818

    Article  Google Scholar 

  • Ďurán IB, Schmidli J, Bhattacharya R (2020) A budget-based turbulence length scale diagnostic. Atmosphere 11(4):425

  • Edwards JM, Beljaars ACM, Holtslag AAM, Lock AP (2020) Representation of boundary-layer processes in numerical weather prediction and climate models. Boundary-Layer Meteorol 177(2–3):511–539. https://doi.org/10.1007/s10546-020-00530-z

    Article  Google Scholar 

  • Einaudi F, Finnigan JJ (1993) Wave-turbulence dynamics in the stably stratified boundary-layer. J Atmos Sci 50(13):1841–1864

    Article  Google Scholar 

  • Fennessy MJ, Shukla J (1999) Impact of initial soil wetness on seasonal atmospheric prediction. J Clim 12:3167–3180

    Article  Google Scholar 

  • Fernando H, Pardyjak E (2013) Field studies delve into the intricacies of mountain weather. EOS Trans Am Geophys Union 36(94):313–315. https://doi.org/10.1002/2013EO360001

    Article  Google Scholar 

  • Fernando H, Pardyjak E, Di Sabatino S, Chow F, De Wekker S, Hoch S, Hacker J, Pace J, Pratt T, Pu Z, Steenburgh J, Whiteman C, Wang Y, Zajic D, Balsley B, Dimitrova R, Emmitt G, Higgins C, Hunt J, Knievel J, Lawrence D, Liu Y, Nadeau D, Kit E, Blomquist B, Conry P, Coppersmith R, Creegan E, Felton M, Grachev A, Gunawardena N, Hang C, Hocut C, Huynh G, Jeglum M, Jensen D, Kulandaivelu V, Lehner M, Leo L, Liberzon D, Massey J, McEnerney K, Pal S, Price T, Sghiatti M, Silver Z, Thompson M, Zhang H, Zsedrovits T (2015) THE MATERHORN—unraveling the intricacies of mountain weather. Bull Am Meteorol Soc 96(11):1945–1967. https://doi.org/10.1175/BAMS-D-13-00131.1

    Article  Google Scholar 

  • Finnigan JJ, Einaudi F, Fua D (1984) The interaction between an internal gravity-wave and turbulence in the stably-stratified nocturnal boundary-layer. J Atmos Sci 41(16):2409–2436

    Article  Google Scholar 

  • Garai A, Pardyjak E, Steeneveld GJ, Kleissl J (2013) Surface temperature and surface-layer turbulence in a convective boundary layer. Boundary-Layer Meteorol 148(1):51–72. https://doi.org/10.1007/s10546-013-9803-4

    Article  Google Scholar 

  • Garratt J (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Ghannam K, Poggi D, Porporato A, Katul GG (2015) The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorol 157(3):447–460

    Article  Google Scholar 

  • Giometto M, Katul G, Fang J, Parlange MB (2017) Direct numerical simulation of turbulent slope Flows up to Grashof number Gr=2\(\times \)11. J Fluid Mech 829:589–620

    Article  Google Scholar 

  • Goger B, Rotach MW, Gohm A, Fuhrer O, Stiperski I, Holtslag AAM (2018) The impact of three-dimensional effects on the simulation of turbulence kinetic energy in a major alpine valley. Boundary-Layer Meteorol 168(1):1–27. https://doi.org/10.1007/s10546-018-0341-y

    Article  Google Scholar 

  • Gopalakrishnan SG, Roy SB, Avissar R (2000) An evaluation of the scale at which topographical features affect the convective boundary layer using large-eddy simulations. J Atmos Sci 57:334–351

    Article  Google Scholar 

  • Hadfield MG, Cotton WR, Pielke RA (1991) Large-eddy simulations of thermally forced circulation in the convective boundary layer. Part I: a small scale circulation with zero wind. Boundary-Layer Meteorol 57:79–114

    Article  Google Scholar 

  • Hadfield MG, Cotton WR, Pielke RA (1992) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: the effect of changes in wavelength and wind speed. Boundary-Layer Meteorol 58:307–327

    Article  Google Scholar 

  • Hang C, Nadeau DF, Pardyjak ER, Parlange MB (2018) A comparison of near-surface potential temperature variance budgets for unstable atmospheric flows with contrasting vegetation cover flat surfaces and a gentle slope. Environ Fluid Mech 20:1. https://doi.org/10.1007/s10652-018-9647-z

    Article  Google Scholar 

  • Heerwaarden CC, Mellado JP, Lozar AD (2014) Scaling laws for the heterogeneously heated free convective boundary layer. J Atmos Sci 71(11):3975–4000. https://doi.org/10.1175/jas-d-13-0383.1

    Article  Google Scholar 

  • Heinze R, Dipankar A, Henken CC, Moseley C, Sourdeval O, Trömel S, Xie X, Adamidis P, Ament F, Baars H, Barthlott C, Behrendt A, Blahak U, Bley S, Brdar S, Brueck M, Crewell S, Deneke H, Di Girolamo P, Evaristo R, Fischer J, Frank C, Friederichs P, Göcke T, Gorges K, Hande L, Hanke M, Hansen A, Hege HC, Hoose C, Jahns T, Kalthoff N, Klocke D, Kneifel S, Knippertz P, Kuhn A, van Laar T, Macke A, Maurer V, Mayer B, Meyer CI, Muppa SK, Neggers RAJ, Orlandi E, Pantillon F, Pospichal B, Röber N, Scheck L, Seifert A, Seifert P, Senf F, Siligam P, Simmer C, Steinke S, Stevens B, Wapler K, Weniger M, Wulfmeyer V, Zängl G, Zhang D, Quaas J (2017) Large-eddy simulations over Germany using ICON: a comprehensive evaluation. Q J R Meteorol Soc 143(702):69–100. https://doi.org/10.1002/qj.2947

    Article  Google Scholar 

  • Higgins CW, Katul GG, Froidevaux M, Simeonov V, Parlange MB (2013) Are atmospheric surface layer flows ergodic? Geophys Res Lett 40(12):3342–3346

    Article  Google Scholar 

  • Higgins CW, Drake SA, Kelley J, Oldroyd HJ, Jensen DD, Wharton S, Mcintosh SW (2019) Ensemble-averaging resolves rapid atmospheric response to the 2017 total solar eclipse. Front Earth Sci 7(August):1–13. https://doi.org/10.3389/feart.2019.00198

    Article  Google Scholar 

  • Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernström M, Van De Wiel BJH (2013) Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc 94(11):1691–1706. https://doi.org/10.1175/BAMS-D-11-00187.1

    Article  Google Scholar 

  • Honnert R, Masson V, Couvreux F (2011) A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J Atmos Sci 68(12):3112–3131. https://doi.org/10.1175/jas-d-11-061.1

    Article  Google Scholar 

  • Honnert R, Couvreux F, Masson V, Lancz D (2016) Sampling the structure of convective turbulence and implications for grey-zone parametrizations. Boundary-Layer Meteorol 160(1):133–156. https://doi.org/10.1007/s10546-016-0130-4

    Article  Google Scholar 

  • Horn GL, Ouwersloot HG, Arellano JVGd, Sikma M (2015) Cloud shading effects on characteristic boundary-layer length scales. Boundary-Layer Meteorol 157(2):237–263. https://doi.org/10.1007/s10546-015-0054-4

    Article  Google Scholar 

  • Inagaki A, Letzel MO, Raasch S, Kanda M (2006) Impact of surface heterogeneity on energy imbalance: a study using LES. J Meteorol Soc Jpn 84(1):187–198. https://doi.org/10.2151/jmsj.84.187

    Article  Google Scholar 

  • Jensen DD, Nadeau DF, Hoch SW, Pardyjak ER (2016) Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces. Boundary-Layer Meteorol 159(3):567–587

    Article  Google Scholar 

  • Kadasch E, Sühring M, Gronemeier T, Raasch S (2020) Mesoscale nesting interface of the PALM model system 6.0. Geosci Model Dev Discuss 14:1–48. https://doi.org/10.5194/gmd-2020-285

    Article  Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) Les study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110(3):381–404. https://doi.org/10.1023/B:BOUN.0000007225.45548.7a

    Article  Google Scholar 

  • Kang SL, Won H (2016) Spectral structure of 5 year time series of horizontal wind speed at the boulder atmospheric observatory. J Geophys Res Atmos 121(20):11,946-11,967. https://doi.org/10.1002/2016JD025289

    Article  Google Scholar 

  • Kang Y, Belušić D, Smith-Miles K (2015) Classes of structures in the stable atmospheric boundary layer. Q J R Meteorol Soc 141(691):2057–2069

    Article  Google Scholar 

  • Katul GG, Parlange MB, Chu CR (1994) Intermittency, local isotropy, and non-gaussian statistics in atmospheric surface layer turbulence. Phys Fluids 6(7):2480–2492

    Article  Google Scholar 

  • Katz R, Murphy A (1997) Economic value of weather and climate forecasts. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kim HJ, Noh Y, Raasch S (2004) Interaction between wind and temperature fields in the planetary boundary layer for a spatially heterogeneous surface heat flux. Boundary-Layer Meteorol 111:225–246

    Article  Google Scholar 

  • Kit E, Hocut C, Liberzon D, Fernando H (2017) Fine-scale turbulent bursts in stable atmospheric boundary layer in complex terrain. J Fluid Mech 833:745–772

    Article  Google Scholar 

  • Lang F, Belušić D, Siems S (2017) Observations of wind-direction variability in the nocturnal boundary layer. Boundary-Layer Meteorol 166(1):51–68

    Article  Google Scholar 

  • Larsén XG, Larsen SE, Petersen EL (2016) Full-scale spectrum of boundary-layer winds. Boundary-Layer Meteorol 159(2):349–371

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    Article  Google Scholar 

  • Lynn BH, Tao WK, Abramopoulos F (2001) A parameterization for the triggering of landscape-generated moist convection. Part I: analysis of high-resolution model results. J Atmos Sci 58(6):575–592. https://doi.org/10.1175/1520-0469(2001)058<0575:APFTTO>2.0.CO;2

    Article  Google Scholar 

  • Mahrt L (2000) Surface heterogeneity and vertical structure of the boundary layer. Boundary-Layer Meteorol 96(1–2):33–62. https://doi.org/10.1023/a:1002482332477

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45

    Article  Google Scholar 

  • Mahrt L, Thomas C (2016) Surface stress with non-stationary weak winds and stable stratification. Boundary-Layer Meteorol 159(1):3–21

    Article  Google Scholar 

  • Mahrt L, Vickers D (2005) Boundary-layer adjustment over small-scale changes of surface heat flux. Boundary-Layer Meteorol 116(2):313–330

    Article  Google Scholar 

  • Mahrt L, Belušić D, Acevedo O (2021) Small-scale spatial variation of the nocturnal wind field. Boundary-Layer Meteorol 180:225–245. https://doi.org/10.1007/s10546-021-00627-z

    Article  Google Scholar 

  • Margairaz F, Pardyjak ER, Calaf M (2020) Surface thermal heterogeneities and the atmospheric boundary layer: the heterogeneity parameter. Boundary-Layer Meteorol 177:49–68. https://doi.org/10.1007/s10546-020-00544-7

    Article  Google Scholar 

  • Margairaz F, Pardyjak ER, Calaf M (2020) Surface thermal heterogeneities and the atmospheric boundary layer: the relevance of dispersive fluxes. Boundary-Layer Meteorol 175:369–395. https://doi.org/10.1007/s10546-020-00509-w

    Article  Google Scholar 

  • Mason PJ (1988) The formation of a really averaged roughness lengths. Q J R Meteorol Soc 114:399–420

    Article  Google Scholar 

  • Mauder M, Foken T, Cuxart J (2020) Surface-energy-balance closure over land: a review. Boundary-Layer Meteorol 177(2–3):395–426. https://doi.org/10.1007/s10546-020-00529-6

    Article  Google Scholar 

  • Meneveau C (1991) Analysis of turbulence in the orthonormal wavelet representation. J Fluid Mech 232:469–520

    Article  Google Scholar 

  • Metzger M, Holmes H (2008) Time scales in the unstable atmospheric surface layer. Boundary-Layer Meteorol 126(1):29–50. https://doi.org/10.1007/s10546-007-9219-0

    Article  Google Scholar 

  • Mirocha J, Kosović B, Kirkil G (2014) Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the weather research and forecasting model. Mon Weather Rev 142(2):806–831. https://doi.org/10.1175/MWR-D-13-00064.1

    Article  Google Scholar 

  • Monin A, Yaglom A (1971) Statistical fluid mechanics, vol 1. The MIT Press, Cambridge

    Google Scholar 

  • Morrison TJ, Calaf M, Fernando HJS, Price A, Pardyjak ER (2017) A methodology for computing spatially and temporally varying surface sensible heat flux from thermal imagery. Q J R Meteorl Soc 143:2616–2624. https://doi.org/10.1002/qj.3112

    Article  Google Scholar 

  • Morrison T, Calaf M, Higgins C, Drake S, Perelet A, Pardyjak E (2021) The impact of surface temperature heterogeneity on near-surface heat transport. Boundary-Layer Meteorol 180:247–272

    Article  Google Scholar 

  • Morrison T, Mauder M, Pardyjak E, Calaf M (2021b) The heat-flux imbalance: the role of advection and dispersive fluxes on heat transport over thermally heterogeneous terrain. Boundary-Layer Meteorol 1–25

  • Mortarini L, Cava D, Giostra U, Acevedo OC, Nogueira Martins LG, Soares de Oliveira PE, Anfossi D (2017) Observations of submeso motions and intermittent turbulent mixing across a low level jet with a 132-m tower. Q J R Meteorol Soc 144(710):172–183

    Article  Google Scholar 

  • Muschinski A, Frehlich RG, Balsley BB (2004) Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer. J Fluid Mech 515:319–351. https://doi.org/10.1017/S0022112004000412

    Article  Google Scholar 

  • Ookouchi Y, Segal M, Kessler RC, Pielke RA (1984) Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon Weather Rev 112:2281–2292

    Article  Google Scholar 

  • Patton E, Sullivan P, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62(7):2078–2097. https://doi.org/10.1175/JAS3465.1

    Article  Google Scholar 

  • Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177

    Article  Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo CJ, Banta RM, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2010) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Am Meteor Soc 83(4):555–582

    Article  Google Scholar 

  • Prabha TV, Karipot A, Binford MW (2007) Characteristics of secondary circulations over an inhomogeneous surface simulated with large-eddy simulation. Boundary-Layer Meteorol 123:239–261

    Article  Google Scholar 

  • Raasch S, Harbusch G (2001) An analysis of secondary circulations and their effects caused by small-scale surface heterogeneities using large-eddy simulation. Boundary-Layer Meteorol 101:31–59

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22(1):79–90. https://doi.org/10.1007/BF00128057

    Article  Google Scholar 

  • Reynolds WC, Hussain AKMF (1972) The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J Fluid Mech 54(2):263–288. https://doi.org/10.1017/S0022112072000679

    Article  Google Scholar 

  • Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge

    Google Scholar 

  • Roulstone I, Norbury J (2013) Invisible in the storm: the role of mathematics in understanding weather. Princeton University Press, Princeton

    Book  Google Scholar 

  • Rowntree PR, Bolton J (1983) Simulation of the atmospheric response to soil moisture anomalies over Europe. Q J R Meteorol Soc 109:501–526

    Article  Google Scholar 

  • Roy SB, Avissar R (2000) Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys Res Lett 27:4533–4536

    Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows. Springer, New York

    Google Scholar 

  • Schalkwijk J, Jonker HJJ, Siebesma AP, van Meijgaard E (2015) Weather forecasting using GPU-based large-eddy simulations. Bull Am Meteorol Soc 96(5):715–724

    Article  Google Scholar 

  • Seuffert G, Gross P, Simmer C, Wood EF (2002) The influence of hydrologic modeling on the predicted local weather: two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J Hydrometeorol 3:505–523

    Article  Google Scholar 

  • Siqueira M, Katul G, Tanny J (2012) The effect of the screen on the mass, momentum, and energy exchange rates of a uniform crop situated in an extensive screenhouse. Boundary-Layer Meteorol 142(3):339–363

    Article  Google Scholar 

  • Speziale CG (1987) On the decomposition of turbulent flow fields for the analysis of coherent structures. Acta Mech 70(1–4):243–250. https://doi.org/10.1007/bf01174658

    Article  Google Scholar 

  • Stevens B, Acquistapace C, Hansen A, Heinze R, Klinger C, Klocke D, Rybka H, Schubotz W, Windmiller J, Adamidis P, Arka I, Barlakas V, Biercamp J, Brueck M, Brune S, Buehler SA, Burkhardt U, Cioni G, Costa-Suros M, Crewell S, Crueger T, Deneke H, Friederichs P, Henken CC, Hohenegger C, Jacob M, Jakub F, Kalthoff N, Koehler M, van Laar TW, Li P, Loehnert U, Macke A, Madenach N, Mayer B, Nam C, Naumann AK, Peters K, Poll S, Quaas J, Roeber N, Rochetin N, Scheck L, Schemann V, Schnitt S, Seifert A, Senf F, Shapkalijevski M, Simmer C, Singh S, Sourdeval O, Spickermann D, Strandgren J, Tessiot O, Vercauteren N, Vial J, Voigt A, Zaengl G (2020) The added value of large-eddy and storm-resolving models for simulating clouds and precipitation. J Meteorol Soc Jpn Ser II 98(2):395–435

    Article  Google Scholar 

  • Stoll R, Gibbs JA, Salesky ST, Anderson W, Calaf M (2020) Large-eddy simulation of the atmospheric boundary layer. Boundary-Layer Meteorol 177:541–581. https://doi.org/10.1007/s10546-020-00556-3

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Sukoriansky S, Galperin B, Staroselsky I (2005) A quasinormal scale elimination model of turbulent flows with stable stratification. Phys Fluids 17(8):085,107

    Article  Google Scholar 

  • Sun J, Burns S, Lenschow DH, Banta RM, Newsom R, Coulter R, Frasier S, Nappo CJ, Ince T, Cuxart J, Blumen W, Lee X, Hu XZ (2002) Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorol 105(2):199–219

    Article  Google Scholar 

  • Sun J, Lenschow DH, Burns S, Banta RM, Newsom R, Coulter R, Nappo CJ, Frasier S, Ince T, Balsley BB (2004) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorol 110(2):255–279

    Article  Google Scholar 

  • Sun J, Mahrt L, Banta RM, Pichugina YL (2012) Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J Atmos Sci 69(1):338–351

    Article  Google Scholar 

  • Sun J, Nappo CJ, Mahrt L, Belušić D, Grisogono B, Stauffer DR, Pulido M, Staquet C, Jiang Q, Pouquet A, Yagüe C, Galperin B, Smith RB, Finnigan JJ, Mayor SD, Svensson G, Grachev AA, Neff WD (2015) Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev Geophys 53(3):956–993. https://doi.org/10.1002/2015RG000487

    Article  Google Scholar 

  • Sun J, Mahrt L, Nappo CJ, Lenschow DH (2015) Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer. J Atmos Sci 72(4):1484–1503

    Article  Google Scholar 

  • Thomas CK, Kennedy AM, Selker JS, Moretti A, Schroth MH, Smoot AR, Tufillaro NB, Zeeman MJ (2012) High-resolution fibre-optic temperature sensing: a new tool to study the two-dimensional structure of atmospheric surface-layer flow. Boundary-Layer Meteorol 142:177–192. https://doi.org/10.1007/s10546-011-9672-7

    Article  Google Scholar 

  • Tjernström M, Balsley BB, Svensson G, Nappo CJ (2009) The effects of critical layers on residual layer turbulence. J Atmos Sci 66(2):468–480

    Article  Google Scholar 

  • Vercauteren N, Klein R (2015) A clustering method to characterize intermittent bursts of turbulence and interaction with submesomotions in the stable boundary layer. J Atmos Sci 72(4):1504–1517

    Article  Google Scholar 

  • Vercauteren N, Mahrt L, Klein R (2016) Investigation of interactions between scales of motion in the stable boundary layer. Q J R Meteorol Soc 142(699):2424–2433

    Article  Google Scholar 

  • Vercauteren N, Boyko V, Kaiser A, Belušić D (2019) Statistical investigation of flow structures in different regimes of the stable boundary layer. Boundary-Layer Meteorol 173(2):143–164

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20(5):660–672

    Article  Google Scholar 

  • Vickers D, Mahrt L, Belušić D (2007) Particle simulations of dispersion using observed meandering and turbulence. Acta Geophys 56(1):234–256

    Article  Google Scholar 

  • Voller V, Porté-Agel F (2002) More’s law and numerical modeling. J Comput Phys 179:698–703. https://doi.org/10.1006/jcph.2002.7083

    Article  Google Scholar 

  • Wyngaard JC (2004) Toward numerical modeling in the ‘terra incognita’. J Atmos Sci 61(14):1816–1826. https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2

    Article  Google Scholar 

  • Wyngaard J (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zhang X, Bao JW, Chen B, Grell ED (2018) A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon Weather Rev 146(7):2023–2045

    Article  Google Scholar 

  • Zhou Y, Li X, Li D, Liu H (2018) Diurnal variations of the flux imbalance over homogeneous and heterogeneous landscapes. Boundary-Layer Meteorol 168(3):417–442. https://doi.org/10.1007/s10546-018-0358-2

    Article  Google Scholar 

  • Zilitinkevich S, Grachev A, Hunt J (1998) Surface Frictional Processes and non-local heat/mass transfer in the shear-free convective boundary layer. In: Buoyant convection in geophysical flows, pp 83–113

Download references

Acknowledgements

Marc Calaf and Eric Pardyjak are thankful for the support of the National Science Foundation Grant PDM-1649067. Marc Calaf is also thankful for the support of the National Science Foundation Grant PDM-1712538 and the support of the Alexander von Humboldt Stiftung/Foundation, Humboldt Research Fellowship for Experienced Researchers, during the sabbatical year at the Karlsruhe Institute of Technology Campus Alpine in Garmisch-Partenkrichen. Nikki Vercauteren and Vyacheslav Boyko acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through Grant Number VE 933/2-2. Marco G. Giometto acknowledges the Civil Engineering and Engineering Mechanics Department at Columbia University for start-up funds. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Calaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calaf, M., Vercauteren, N., Katul, G.G. et al. Boundary-Layer Processes Hindering Contemporary Numerical Weather Prediction Models. Boundary-Layer Meteorol 186, 43–68 (2023). https://doi.org/10.1007/s10546-022-00742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00742-5

Keywords

Navigation