Skip to main content
Log in

A Case Study on the Effects of Heterogeneous Soil Moisture on Mesoscale Boundary-Layer Structure in the Southern Great Plains, U.S.A. Part I: Simple Prognostic Model

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The atmospheric boundary-layer (ABL) depth was observed by airborne lidar and balloon soundings during the Southern Great Plains 1997 field study (SGP97). This paper is Part I of a two-part case study examining the relationship of surface heterogeneity to observed ABL structure. Part I focuses on observations. During two days (12–13 July 1997) following rain, midday convective ABL depth varied by as much as 1.5 km across 400 km, even with moderate winds. Variability in ABL depth was driven primarily by the spatial variation in surface buoyancy flux as measured from short towers and aircraft within the SGP97 domain. Strong correlation was found between time-integrated buoyancy flux and airborne remotely sensed surface soil moisture for the two case-study days, but only a weak correlation was found between surface energy fluxes and vegetation greenness as measured by satellite. A simple prognostic one-dimensional ABL model was applied to test to what extent the soil moisture spatial heterogeneity explained the variation in north–south ABL depth across the SGP97 domain. The model was able to better predict mean ABL depth and variations on horizontal scales of approximately 100 km using observed soil moisture instead of constant soil moisture. Subsidence, advection, convergence/divergence and spatial variability of temperature inversion strength also contributed to ABL depth variations. In Part II, assimilation of high-resolution soil moisture into a three-dimensional mesoscale model (MM5) is discussed and shown to improve predictions of ABL structure. These results have implications for ABL models and the influence of soil moisture on mesoscale meteorology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J. C., Norman J. M., Diak G. R., Kustas W. P., Mecikalski J. R. (1997). ‘A Two-source Time Integrated Model for Estimating Surface Fluxes using Thermal Infrared Remote Sensing’. Remote Sens. Environ 60:195–216

    Article  Google Scholar 

  • Avery T.E., Berlin G.L. (1992). Fundamentals of Remote Sensing and Airphoto Interpretation5th ed. Prentice-Hall,Upper Saddle River, NJ, USA, 472 pp.

    Google Scholar 

  • Avissar R., Pielke R.A. (1989). ‘A Parameterization of Heterogeneous Land-surface for Atmospheric Numerical Models and its Impact on Regional Meteorology’. Mon. Wea. Rev. 117:2113–2136

    Article  Google Scholar 

  • Avissar R., Schmidt T. (1998). ‘An Evaluation of the Scale at which Ground-Surface Heat Flux Patchiness Affects the Convective Boundary Layer using Large-Eddy Simulations’. J. Atmos. Sci. 55:2666–2689

    Article  Google Scholar 

  • Batchvarova E., Gryning S.-E. (1991). ‘Applied Model for the Growth of the Daytime Mixed Layer’. Boundary-Layer Meteorol. 65:261–274

    Article  Google Scholar 

  • Betts A.K. (2004). ‘Understanding Hydrometeorology using Global Models’. Bull. Am. Meteorol. Soc. 85:1673–1688

    Article  Google Scholar 

  • Betts A.K., Ball J.H. (1996). ‘The Land Surface–atmosphere Interaction: A Review based on Observations and Global Modelling Perspectives’. J. Geophys. Res. 101(D3):7209–7225

    Article  Google Scholar 

  • Bindlish R., Kustas W.P., French A.N., Diak G.R., Mecikalski J.R. (2001). ‘Influence of Near-surface Soil Moisture on Regional Scale Heat Fluxes: Model results using Microwave Remote Sensing Data from SGP97’. IEEE T. Geosci. Remote 39:1719–1728

    Article  Google Scholar 

  • Browell E.V. (1989). ‘Differential Absorption Lidar Sensing of Ozone’. P. IEEE 77:419–432

    Article  Google Scholar 

  • Browell E.V., Ismail S., Hall W.M., Moore A.S., Kooi S.A., Brackett V.G., Clayton M.B., Barrick J.D.W., Schmidlin F.J., Higdon N.S., Melfi S.H., Whiteman D. (1997). ‘LASE validation experiment’. In: Ansmann A., Neuber R., Rairoux P., Wanginger U (eds). Advances in Atmospheric Remote Sensing with Lidar. Springer-Verlag pp. 289–295

  • Brunsell N.A., Gillies R.R. (2003). ‘Length Scale Analysis of Surface Energy Fluxes derived from Remote Sensing’. J. Hydrometeorol. 4:1212–1219

    Article  Google Scholar 

  • Brutsaert W., Hsu A.Y., Schmugge T.J. (1993). ‘Parameterization of Surface Heat Fluxes above Forest with Satellite Thermal Sensing and Boundary-layer Soundings’. J. Appl. Meteorol. 32:909–917

    Article  Google Scholar 

  • Carson D.J. (1973). ‘The Development of a Dry Inversion-Capped Convectively Unstable Boundary Layer’. Qqart. J. Roy. Meteorol. Soc. 99:450–467

    Article  Google Scholar 

  • Chehbouni A., Seen D.L., Njoku E.G., Lhomme J.P., Monteny B., Kerr Y.H. (1997). ‘Estimation of Sensible Heat Flux over Sparsely Vegetated Surfaces’. J. Hydrol. 189:855–868

    Article  Google Scholar 

  • Chen F., Yates D.N., Nagai H., LeMone M.A., Ikeda K., Grossman R.L. (2003). ‘Land Surface Heterogeneity in the Cooperative Atmosphere Surface Exchange Study (CASES-97). Part I: Comparison of Modelled Surface Flux Maps with Surface-Flux Tower and Aircraft Measurements’. J. Hydrometeorol. 4:196–218

    Article  Google Scholar 

  • Crow W.T., Wood E.F. (2002). ‘Impact of Soil Moisture Aggregation on Surface Energy Flux Prediction during SGP97’. Geophys. Res. Lett. 29, doi: 10.1029/ 2001GL013796

  • Davis K.J., Gamage N., Hagelberg C.R., Kiemle C., Lenschow D.H., Sullivan P.P. (2000). ‘An Objective Method for Determining Atmospheric Structure from Airborne Lidar Observations’. J. Atmos. Oceanic Technol. 17:1455–1468

    Article  Google Scholar 

  • Deardorff J.W., Willis G.E., Lilly D.K. (1980). ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’. J. Fluid Mech. 100:41–64

    Article  Google Scholar 

  • Diak G.R., Mecikalski J.R., Anderson M.C., Norman J.M., Kustas W.P., Torn R.D., DeWolf R.L. (2004). ‘Estimated Land Surface Energy Budgets from Space: Review and Current Efforts at the University of Wisconsin – Madison and USDA-ARS’. Bull. Am. Meteorol. Soc. 85:65–78

    Article  Google Scholar 

  • Dirmeyer P.A., Zeng F.J., Ducharne A., Morrill J.C., Koster R.D. (2000). ‘The Sensitivity of Surface Fluxes to Soil Water Content in Three Land Surface Schemes’. J. Hydrometeorol. 1:121–134

    Article  Google Scholar 

  • Dobosy R.J., MacPherson J.I. (1999). ‘Intercomparison between Two Flux Airplanes at SGP97’, in Proceedings of the 14th Conf. on Hydrology, Dallas, TX, January 10–15, 1999, Amer. Meteorol. Soc., 45 Beacon St., Boston, MA, pp. 137–140, preprint

  • Doran J.C., Hubbe J.M., Liljegren J.C., Shaw W.J., Collatz G.J., Cook D.R., Hart R.L. (1998). ‘A Technique for Determining the Spatial and Temporal Distributions of Surface Fluxes of Heat and Moisture over the Southern Great Plains Cloud and Radiation Testbed’. J. Geophys. Res. 103(D6):6109–6121

    Article  Google Scholar 

  • Findell K.L., Elfatir A.B. (2003). ‘Atmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part I: Framework Development’. J. Hydrometeorol. 4:552–569

    Article  Google Scholar 

  • French A.N, Schmugge T.J., Kustas W.P. (2000). ‘Estimating Surface Fluxes over the SGP Site with Remotely Sensed Data’. Phys. Chem. Earth Pt. B 25:167–172

    Google Scholar 

  • Gao W., Coulter R.L., Lesht B.M., Qiu J., Wesely M.L. (1998). ‘Estimated Clear-sky Regional Surface Fluxes in the Southern Great Plains Atmospheric Radiation Measurement Site with Ground Measurements and Satellite Observations’. J. Appl. Meteorol. 37:5–22

    Article  Google Scholar 

  • Garcia A.L. (2000). Numerical Methods for Physics, 2nd Ed. Prentice Hall, Upper Saddle River, NJ U.S.A 423 pp.

    Google Scholar 

  • Gillies R.R. Carlson T.N. (1995). ‘Thermal Remote Sensing of Surface Soil Water Content with Partial Vegetation Cover for Incorporation into Climate Models’. J. Appl. Meteorol. 34:745–756

    Article  Google Scholar 

  • Gryning S.-E., Batchvarova E. (1996). ‘A Model for the Height of the Internal Boundary Layer Over an Area with an Irregular Coastline’. Boundary-Layer Meteorol. 78:405–413

    Article  Google Scholar 

  • Hart R.L., Cook D.R., Wesely M.L. (1998). ‘The ARM Eddy Correlation System For Monitoring Surface Fluxes’, in 10th Symposium On Meteorological Observations and Instrumentation, Phoenix, AZ, 11–16 January 1998, Amer. Meteorol. Soc., 45 Beacon St., Boston, MA, pp. 335–336, preprint

  • Hubbe J.M., Doran J.C., Liljegren J.C., Shaw W.J. (1997) ‘Observations of Spatial Variations of Boundary Layer Structure over the Southern Great Plains Cloud and Radiation Testbed’. J. Appl. Meteorol. 36:1221–1231

    Article  Google Scholar 

  • Ismail S., Browell E.V., Ferrare R.A., Senff C., Davis K.J., Lenschow D.H., Kooi S.A., Brackett V.G., Clayton M.B. (1998). ‘LASE Measurements of Convective Boundary Layer Development During SGP97’, in 19th Intl. Laser Radar Conf., Annapolis, MD, 6–10 Jaul 1998, NASA, preprint

  • Jackson T.J. (1997). Southern Great Plains 1997 (SGP97) Hydrology Experiment Plan. USDA-ARS Hydrology Laboratory, Beltsville, MD, U.S.A 178 pp.

    Google Scholar 

  • Jackson T.J., Le Vine D.M., Hsu A.Y., Oldak A., Starks P.J., Swift C.T., Isham J.D., Haken M. (1999). ‘Soil Moisture Mapping at Regional Scales using Microwave Radiometry: the Southern Great Plains Hydrology Experiment’. IEEE T. Geosci. Remote 37:2136–2151

    Article  Google Scholar 

  • Koster R.D., Dirmeyer P.A., Guo Z., Bonan G., Chan E., Cox P., Gordon C.T., Kanae S., Kowalczyk E., Lawrence D., Liu P., Lu C., Malyshev S., McAvaney B., Mitchell K., Mocko D., Oki T., Oleson K., Pitman A., Sud Y.C., Taylor C.M., Verseghy D., Vasic R., Xue Y., Yamada T. (2004). ‘Regions of Strong Coupling between Soil Moisture and Precipitation’. Science 305:1138–1140

    Article  PubMed  Google Scholar 

  • Kustas W.P., Zhan X., Jackson T.J. (1999). ‘Mapping Surface Energy Flux Partitioning at Large Scales with Optical and Microwave Remote-Sensing Data from Washita ‘92’. Water Resour. Res. 35:265–277

    Article  Google Scholar 

  • LeMone M.A., Grossman R.L., Chen F., Ikeda K., Yates D. (2003). ‘Choosing the Averaging Interval for Comparison of Observed and Modelled Fluxes along Aircraft Transects over a Heterogeneous Surface’. J. Hydrometeorol. 4:179–195

    Article  Google Scholar 

  • Le Vine D.M., Griffis A.J., Swift C.T., Jackson T.J. (1994). ‘ESTAR: A Synthetic Aperture Microwave Radiometer for Remote Sensing Applications’. P. IEEE 82:1787–1801

    Article  Google Scholar 

  • MacPherson J.I. (1998). NRC Twin Otter Operations in the 1997 Southern Great Plains experiment. National Research Council-Canada Institute for Aerospace Research,Rep. LTR-FR-146 Ottawa Canada 122 pp.

    Google Scholar 

  • Mahrt L. (2000). ‘Surface Heterogeneity and Vertical Structure of the Boundary layer’. Boundary-Layer Meteorol. 96:33–62

    Article  Google Scholar 

  • Mann J., Lenschow D.H. (1994). ‘Errors in Airborne Flux Measurements’. J. Geophys. Res. 99:14,519–14,526

    Google Scholar 

  • Mecikalski J.R., Diak G.R., Anderson M.C., Norman J.M. (1999). ‘Estimating Fluxes on Continental Scales using Remote Sensed Data in an Atmospheric–Land Exchange Model’. J. Appl. Meteorol. 38:1352–1369

    Article  Google Scholar 

  • Pelgrum H., Bastiaanssen W.G.M. (1996). ‘An Intercomparison of Techniques to Determine the Area-Averaged Latent Heat Flux from Individual In Situ Observations: A Remote Sensing Approach using the European Field Experiment in a Desertification-Threatened Area Data’. Water Resour. Res. 32:2775–2786

    Article  Google Scholar 

  • Rabin R.M., Burns B.A., Collimore C., Diak G.R., Raymond W. (2000) ‘Relating Remotely-sensed Vegetation and Soil Moisture Indices to Surface Energy Fluxes in Vicinity of an Atmospheric Dryline’. Remote Sens. Rev. 18:53–82

    Google Scholar 

  • Raupach R.R., Finnigan J.J. (1995). ‘Scale Issues in Boundary-Layer Meteorology: Surface Energy Balances in Heterogeneous Terrain’. Hydro. Proc. 9:589–612

    Article  Google Scholar 

  • Ridder K.D. (2000). ‘Remote Sensing of Parameters that Regulate Energy and Water-Transfer at the Land–Atmosphere interface’. Phys. Chem. Earth Pt. B 25:159–165

    Google Scholar 

  • Roerink G.J., Su Z., Menenti M. (2000). ‘S-SEBI: A Simple Remote-sensing Algorithm to Estimate the Surface-Energy Balance’. Phys. Chem. Earth Pt. B 25:147–157

    Google Scholar 

  • Segal M., Arritt R.W. (1992). ‘Nonclassical Mesoscale Circulations caused by Surface Sensible Heat-Flux Gradients’. Bull. Am. Meteorol. Soc. 73:1593–1604

    Article  Google Scholar 

  • Song J., Wesely M.L. (2003). ‘On Comparison of Modelled Surface Flux Variations to Aircraft Observations’. Agr. Forest Meteorol. 117:159–171

    Article  Google Scholar 

  • Tennekes H. (1973). ‘A Model for the Dynamics of the Inversion above a Convective Boundary layer’. J. Atmos. Sci. 30: 558–567

    Article  Google Scholar 

  • Twine T.E., Kustas W.P., Norman J.M., Cook D.R., Houser P.R., Meyers T.P., Prueger J.H., Starks P.J., Wesely M.L. (2000). ‘Correcting Eddy-Covariance Flux Underestimates over a Grassland’. Agr. Forest Meteorol. 103:279–300

    Article  Google Scholar 

  • Weaver C.P. (2004). ‘Coupling between Large-scale Atmospheric Processes and Mesoscale Land–Atmosphere Interactions in the U.S. Southern Great Plains during Summer. Part I: Case Studies’. J Hydrometeorol. 5:1223–1246

    Article  Google Scholar 

  • Wesely M.W., Cook D.R., Coulter R.L. (1995). ‘Surface Heat Flux Data from Energy Balance Bowen Ratio Systems’, in Ninth Symposium on Meteorological Observations and Instrumentation, Charlotte, NC, 27–31 March 1995, Amer. Meteorol. Soc., 45 Beacon St., Boston, MA, pp. 486–489, preprint

  • Wetzel P.J., Chang J. (1987). ‘Concerning the Relationship between Evapotranspiration and Soil Moisture’. J. Clim. Appl. Meteorol. 26:18–27

    Article  Google Scholar 

  • Wood N., Mason P.J. (1991). ‘The Influence of Stability on the Effective Roughness Lengths for Momentum and Heat Flux’. Quart J. Roy. Meteorol. Soc. 117:1025–1056

    Article  Google Scholar 

  • Yan H., Anthes R.A. (1988). ‘The Effects of Variations in Surface Moisture on Mesoscale Circulations’. Mon. Wea. Rev. 116:192–208

    Article  Google Scholar 

  • Zhong S., Doran J.C. (1997). ‘A Study of the Effects of Spatially Varying Fluxes on Cloud Formation and Boundary Layer Properties using Data from the Southern Great Plains Cloud and Radiation Testbed’. J. Climate 10:327–341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur R. Desai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, A.R., Davis, K.J., Senff, C.J. et al. A Case Study on the Effects of Heterogeneous Soil Moisture on Mesoscale Boundary-Layer Structure in the Southern Great Plains, U.S.A. Part I: Simple Prognostic Model. Boundary-Layer Meteorol 119, 195–238 (2006). https://doi.org/10.1007/s10546-005-9024-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9024-6

Keywords

Navigation