Boundary-Layer Meteorology

, Volume 165, Issue 2, pp 211–231 | Cite as

A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO\(_2\)

  • João A. Hackerott
  • Mostafa Bakhoday Paskyabi
  • Joachim Reuder
  • Amauri P. de Oliveira
  • Stephan T. Kral
  • Edson P. Marques Filho
  • Michel dos Santos Mesquita
  • Ricardo de Camargo
Research Article

Abstract

We discuss scalar similarities and dissimilarities based on analysis of the dissipation terms in the variance budget equations, considering the turbulent kinetic energy and the variances of temperature, specific humidity and specific CO\(_2\) content. For this purpose, 124 high-frequency sampled segments are selected from the Boundary Layer Late Afternoon and Sunset Turbulence experiment. The consequences of dissipation similarity in the variance transport are also discussed and quantified. The results show that, for the convective atmospheric surface layer, the non-dimensional dissipation terms can be expressed in the framework of Monin–Obukhov similarity theory and are independent of whether the variable is temperature or moisture. The scalar similarity in the dissipation term implies that the characteristic scales of the atmospheric surface layer can be estimated from the respective rate of variance dissipation, the characteristic scale of temperature, and the dissipation rate of temperature variance.

Keywords

Atmospheric surface layer Scalar similarity Turbulent dissipation Turbulent transport Variance budget equation 

Notes

Acknowledgements

The authors thank the technicians at IAG-USP and at GFI-UiB and several colleagues for assistance, and particularly for the valuable comments and support of Luciano P. Pezzi, Leonardo Domingues, Pamela Dominutti, Line Baserud and Valerie Kumer. The helpful comments of two anonymous reviewers are greatly appreciated. This work was conducted through a scholarship by the International Cooperation Program CAPES/COFECUB at the University of Bergen, financed by CAPES Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil. The BLLAST field experiment was made possible thanks to the contribution of several institutions and funding sources: INSU-CNRS (Institut National des Sciences de l’Univers, Centre national de la Recherche Scientifique, LEFE-IDAO program), Météo-France, Observatoire Midi-Pyrénées (University of Toulouse), EUFAR (EUropean Facility for Airborne Research) and COST ES0802 (European Cooperation in Science and Technology). The field experiment would not have occurred without the contribution of all participating European and American research groups, which all have contributed significantly. The BLLAST field experiment was hosted by the instrumented site of Centre de Recherches Atmospheriques, Lannemezan, France (Observatoire Midi-Pyrénées, Laboratoire d’Aérologie). The BLLAST data are managed by SEDOO, from the Observatoire Midi-Pyrénées. The participation of the Meteorology Group of the Geophysical Institute, University of Bergen was facilitated by contributions of the Geophysical Institute and the Faculty of Mathematics and Natural Sciences under the “smådriftsmidler” scheme, a travel stipend by the Meltzer Foundation in Bergen, and the Short Term Scientific Mission (STSM) scheme within the COST Action ES0802 “Unmanned Aerial Vehicles in Atmospheric Research”.

Supplementary material

10546_2017_271_MOESM1_ESM.pdf (6 kb)
Supplementary material 1 (pdf 5 KB)

References

  1. Bloomfield P (2000) Fourier analysis of time series, 2nd edn. Wiley, Raleigh, 254 ppGoogle Scholar
  2. Bluteau CE, Jones NL, Ivey GN (2011) Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnol Oceanogr Methods 9:302–321CrossRefGoogle Scholar
  3. Corrsin S (1951) On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22(4):469–473CrossRefGoogle Scholar
  4. de Arellano JVG, Duynkerke PG (1995) Atmospheric surface layer similarity theory applied to chemically reactive species. J Geophys Res 100:1397–1408CrossRefGoogle Scholar
  5. Detto M, Katul GG (2007) Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorol 122:205–216CrossRefGoogle Scholar
  6. Dias NL, Brutsaert W (1996) Similarity of scalars under stable conditions. Boundary-Layer Meteorol 80(4):355–373CrossRefGoogle Scholar
  7. Dupuis H, Taylor PK, Weill A, Katsaros K (1997) Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere. J Geophys Res 102(C9):21115CrossRefGoogle Scholar
  8. Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7(3):363–372CrossRefGoogle Scholar
  9. Edson JB, Fairall CW (1998) Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets*. J Atmos Sci 55(13):2311–2328CrossRefGoogle Scholar
  10. Edson JB, Fairall CW, Mestayer PG, Larsen SE (1991) A study of the inertial-dissipation method for computing air-sea fluxes. J Geophys Res 96(C6):10689CrossRefGoogle Scholar
  11. Fairall CW, Larsen SE (1986) Inertial-dissipation methods and turbulent fluxes at the air-ocean interface. Boundary-Layer Meteorol 34(3):287–301. doi:10.1007/BF00122383
  12. Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119(3):431–447CrossRefGoogle Scholar
  13. Foken T, Göockede M, Mauder M, Mahrt L, Amiro B, Munger W (2005) Post-field data quality control. Springer, DordrechtCrossRefGoogle Scholar
  14. Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6(2):3381–3402CrossRefGoogle Scholar
  15. Hartogensis OK, Bruin HARD (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2):253–276. doi:10.1007/s10546-004-2817-1
  16. Hill RJ (1989) Implications of Monin–Obukhov similarity theory for scalar quantities. J Atmos Sci 46(14):2236–2244CrossRefGoogle Scholar
  17. Hill RJ (1997) Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J Atmos Ocean Technol 14(3):456–467CrossRefGoogle Scholar
  18. Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78(3–4):215–246CrossRefGoogle Scholar
  19. Iwata T, Yoshikawa K, Higuchi Y, Yamashita T, Kato S, Ohtaki E (2005) The spectral density technique for the determination of CO\(_2\) flux over the ocean. Boundary-Layer Meteorol 117(3):511–523CrossRefGoogle Scholar
  20. Jensen DD, Nadeau DF, Hoch SW, Pardyjak ER (2016) Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces. Boundary-Layer Meteorol 159(3):567–587CrossRefGoogle Scholar
  21. Kader BA (1992) Determination of turbulent momentum and heat fluxes by spectral methods. Boundary-Layer Meteorol 61(4):323–347CrossRefGoogle Scholar
  22. Kaimal JC, Gaynor JE (1983) The boulder atmospheric observatory. J Clim Appl Meteorol 22(5):863–880CrossRefGoogle Scholar
  23. Kaimal JCJ, Wyngaard JCJ, Izumi Y, Coté OR, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589CrossRefGoogle Scholar
  24. Katul GG, Hsieh CI (1999) A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Boundary-Layer Meteorol 90(2):327–338CrossRefGoogle Scholar
  25. Katul GG, Sempreviva AM, Cava D (2008) The temperature-humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126(2):263–278CrossRefGoogle Scholar
  26. Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32(1):16–18Google Scholar
  27. Kooijmans LMJ, Hartogensis OK (2016) Surface-layer similarity functions for dissipation rate and structure parameters of temperature and humidity based on eleven field experiments. Boundary-Layer Meteorol 160(3):501–527CrossRefGoogle Scholar
  28. Lee X, Finnigan J, Paw UKT (2005) Coordinate systems and flux bias error. Springer, Dordrecht, pp 33–66Google Scholar
  29. Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262CrossRefGoogle Scholar
  30. Li M, Babel W, Tanaka K, Foken T (2013) Note on the application of planar-fit rotation for non-omnidirectional sonic anemometers. Atmos Meas Tech 6(2):221–229CrossRefGoogle Scholar
  31. Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, de Vilà-Guerau Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jimenez Cortes Ma, Jonassen M, van den Kroonenberg A, Lenschow DH, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene aF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14(7):10,789–10,852CrossRefGoogle Scholar
  32. Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3):375–396CrossRefGoogle Scholar
  33. Nilsson E, Lothon M, Lohou F, Pardyjak E, Hartogensis O, Darbieu C (2016) Turbulence kinetic energy budget during the afternoon transition: part 2: a simple TKE model. Atmos Chem Phys 15(21):29,807–29,869CrossRefGoogle Scholar
  34. Norman M, Rutgersson A, Sørensen LL, Sahlée E (2012) Methods for estimating airsea fluxes of CO\(_2\) using high-frequency measurements. Boundary-Layer Meteorol 144(3):379–400CrossRefGoogle Scholar
  35. Ohtaki E (1985) On the similarity in atmospheric fluctuations of carbon dioxide, water vapor and temperature over vegetated fields. Boundary-Layer Meteorol 32(1):25–37CrossRefGoogle Scholar
  36. Pahlow M, Parlange MB, Port-Agel F (2001) On Monin–Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol 99(2):225–248CrossRefGoogle Scholar
  37. Rannik Ü (1998) On the surface layer similarity at a complex forest site. J Geophys Res 103(D8):8685–8697CrossRefGoogle Scholar
  38. Rannik U, Peltola O, Mammarella I (2016) Random uncertainties of flux measurements by the eddy covariance technique. Atmos Meas Tech 9(10):5163–5181CrossRefGoogle Scholar
  39. Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120(1):39–63CrossRefGoogle Scholar
  40. Sahlée E, Smedman AS, Rutgersson A, Högström U (2008) Spectra of CO\(_2\) and water vapour in the marine atmospheric surface layer. Boundary-Layer Meteorol 126(2):279–295CrossRefGoogle Scholar
  41. Sempreviva AM, Højstrup J (1998) Transport of temperature and humidity variance and covariance in the marine surface layer. Boundary-Layer Meteorol 87(2):233–253CrossRefGoogle Scholar
  42. Sjöblom A, Smedman AS (2004) Comparison between eddy-correlation and inertial dissipation methods in the marine atmospheric surface layer. Boundary-Layer Meteorol 110(2):141–164CrossRefGoogle Scholar
  43. Sørensen LL, Larsen SE (2010) Atmosphere surface fluxes of CO\(_2\) using spectral techniques. Boundary-Layer Meteorol 136(1):59–81CrossRefGoogle Scholar
  44. Sørensen LL, Jensen B, Glud RN, McGinnis DF, Sejr MK, Sievers J, Søgaard DH, Tison JL, Rysgaard S (2014) Parameterization of atmosphere surface exchange of CO\(_2\) over sea ice. Cryosphere 8(3):853–866CrossRefGoogle Scholar
  45. Stull RB (1988) An introduction to boundary layer meteorology. Springer, Dordrecht, 666 ppGoogle Scholar
  46. van de Boer A, Moene AF, Graf A, Schüttemeyer D, Simmer C (2014) Detection of entrainment influences on surface-layer measurements and extension of Monin–Obukhov similarity theory. Boundary-Layer Meteorol 152(1):19–44CrossRefGoogle Scholar
  47. Wang L, Li D, Gao Z, Sun T, Guo X, Bou-Zeid E (2014) Turbulent transport of momentum and scalars above an urban canopy. Boundary-Layer Meteorol 150(3):485–511CrossRefGoogle Scholar
  48. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100CrossRefGoogle Scholar
  49. Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122(1):149–165CrossRefGoogle Scholar
  50. Willis GE, Deardorff JW (1976) On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Q J R Meteorol Soc 102(434):817–822CrossRefGoogle Scholar
  51. Yelland M, Taylor PK (1996) Wind stress measurements from the open ocean. J Phys Oceanogr 26(4):541–558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • João A. Hackerott
    • 1
  • Mostafa Bakhoday Paskyabi
    • 2
  • Joachim Reuder
    • 2
  • Amauri P. de Oliveira
    • 1
  • Stephan T. Kral
    • 2
  • Edson P. Marques Filho
    • 3
  • Michel dos Santos Mesquita
    • 4
  • Ricardo de Camargo
    • 1
  1. 1.Institute of Astronomy, Geophysics and Atmospheric SciencesUniversity of Sao PauloSao PauloBrazil
  2. 2.Geophysical InstituteUniversity of Bergen, and Bjerknes Centre for Climate ResearchBergenNorway
  3. 3.Institute of PhysicsFederal University of BahiaSalvadorBrazil
  4. 4.Uni Research Climate and Bjerknes Centre for Climate ResearchBergenNorway

Personalised recommendations