Skip to main content
Log in

Methods for Estimating Air–Sea Fluxes of CO2 Using High-Frequency Measurements

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The most direct method for flux estimation uses eddy covariance, which is also the most commonly used method for land-based measurements of surface fluxes. Moving platforms are frequently used to make measurements over the sea, in which case motion can disturb the measurements. An alternative method for flux estimation should be considered if the effects of platform motion cannot be properly corrected for. Three methods for estimating CO2 fluxes are studied here: the eddy-covariance, the inertial-dissipation, and the cospectral-peak methods. High-frequency measurements made at the land-based Östergarnsholm marine station in the Baltic Sea and measurements made from a ship during the Galathea 3 expedition are used. The Kolmogorov constant for CO2, used in the inertial-dissipation method, is estimated to be 0.68 and is determined using direct flux measurements made at the Östergarnsholm site. The cospectral-peak method, originally developed for neutral stratification, is modified to be applicable in all stratifications. With these modifications, the CO2 fluxes estimated using the three methods agree well. Using data from the Östergarnsholm site, the mean absolute error between the eddy-covariance and inertial-dissipation methods is 0.25 μmol  m−2 s−1. The corresponding mean absolute error between the eddy-covariance and cospectral-peak methods is 0.26 μmol m−2 s−1, while between the inertial-dissipation and cospectral-peak methods it is 0.14 μmol m−2 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RJ (1993) A study of wind stress and heat flux over the open ocean by the inertial-dissipation method. J Phys Oceanogr 23: 2153–2161

    Article  Google Scholar 

  • Burba GG, Anderson DJ, Xu L, McDermitt DK (2006) Correcting apparent off-season CO2 uptake due to surface heating of an open path gas analyser: progress report of ongoing study. In: Proceedings of the 27th annual conference of agricultural and forest meteorology, San Diego, CA

  • Burba GG, McDermitt DK, Grelle A, Anderson DJ, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biol 14: 1–23

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J R Meteorol Soc 81: 639–640

    Article  Google Scholar 

  • Christiansen MB, Sørensen LL, Hasager CB, Nissen J (2007) Air–sea fluxes of CO2 from Galathea 3. Ship and satellite measurements. IGBP Global Chang Newsl 69(May):6

    Google Scholar 

  • Donelan MA, Drennan WM, Katsaros KB (1997) The air–sea momentum flux in wind sea and swell. J Phys Oceanogr 27: 2087–2099

    Article  Google Scholar 

  • Dupuis H, Taylor PK, Weill A, Katsaros K (1997) Inertial dissipation method applied to derive turbulent fluxes over the ocean during the surface of the ocean, fluxes and interactions with the atmosphere/Atlantic stratocumulus transition experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogenities Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds. J Geophys Res 102: 21115–21129

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux–gradient relationships in the constant flux layer. Q J R Meteorol Soc 96: 715–721

    Article  Google Scholar 

  • Edson JB, Fairall CW, Mestayer PG, Larsen SE (1991) A study of the inertial-dissipation method for computing air-sea fluxes. J Geophys Res 96: 10689–10711

    Article  Google Scholar 

  • Edson JB, Zappa CJ, Ware JA, McGillis WR, Hare JE (2004) Scalar flux profile relationships over the open ocean. J Geophys Res 109: C08S09. doi:10.1029/2003JC001960

    Article  Google Scholar 

  • Fairall CW, Edson JB, Larsen SE, Mestayer PG (1990) Inertial-dissipation air–sea flux measurements: a prototype system using realtime spectral computitions. J Atmos Oceanic Technol 7: 425–453

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Godfrey JS, Wick GA, Edson JB (1996) Cool-skin and warm-layer effects on sea surface temperature. J Geophys Res 101: 1295–1308

    Article  Google Scholar 

  • Fairall CW, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16: 571–591

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Fredrickson PA, Davidson KL, Edson JB (1997) A study of wind stress determination methods from a ship and an offshore tower. J Atmos Oceanic Technol 14: 822–834

    Article  Google Scholar 

  • Hicks BB, Dyer AJ (1972) The spectral density technique for determination of eddy fluxes. Q J R Meteorol Soc 98: 838–844

    Article  Google Scholar 

  • Hilligsøe KM, Richardson K, Bendtsen J, Sørensen LL, Nielsen TG, Lyngsgaard MM (2011) Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep-Sea Res I 58: 826–838

    Article  Google Scholar 

  • Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air–sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys Res Lett 33: L16611. doi:10.1029/2006GL026817

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47: 1949–1972

    Article  Google Scholar 

  • Högström U, Sahlée E, Drennan WM, Kahma KK, Smedman A, Johansson C, Pettersson H, Rutgersson A, Tuomi L, Zhang F, Johansson M (2008) Momentum fluxes and wind gradients in the marine boundary layer: a multi-platform study. Boreal Environ Res 13: 475–502

    Google Scholar 

  • Iwata T, Yoshikawa K, Higuchi Y, Yamashita T, Kato S, Ohtaki E (2005) The spectral density technique for the determination of CO2 flux over the ocean. Boundary-Layer Meteorol 117(3): 511–523

    Article  Google Scholar 

  • Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G, Vesala T (2009) Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in an urban complex environment. Boreal Environ Res 14: 499–514

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98: 563–589

    Article  Google Scholar 

  • Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11: 324–336

    Article  Google Scholar 

  • Larsen SE (1986) Hot-wire measurements of atmospheric turbulence near the ground. Risø-R-233. Risø National Laboratory, Roskilde

  • Larsen SE, Hansen FA (1996) Micrometeorological estimation of fluxes of CO2, heat, humidity and momentum in the marine atmospheric surface layer during OMEX. In: OMEX final report, Subproject F (ULB, Brussels, Belgium), F, 1-F, 37

  • Larsen SE, Yelland M, Taylor P, Jones ISF, Hasse L, Brown RA (2001) The measurements of surface stress. In: Jones ISF, Toba Y (eds) Wind stress over the ocean, 1st edn. Cambridge University Press, UK, pp 155–205

    Chapter  Google Scholar 

  • Launiainen J (1995) Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies. Boundary-Layer Meteorol 76: 165–179

    Article  Google Scholar 

  • Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109: 99–106

    Article  Google Scholar 

  • Mahrt L, Lee X, Black A, Neumann H, Staebler RM (2000) Nocturnal mixing in a forest subcanopy. Agric Forest Meteorol 101: 67–78

    Article  Google Scholar 

  • McBean GA, Miyake M (1972) Turbulent transfer mechanisms in the atmospheric surface-layer. Q J R Meteorol Soc 98: 383–398

    Article  Google Scholar 

  • Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Uppstill-Goddard RC (2000) In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14: 373–387

    Article  Google Scholar 

  • Ohtaki E (1982) The Kolmogorov constant for carbon dioxide in the atmospheric surface layer over a paddy field. Boundary-Layer Meteorol 23(2): 153–159

    Article  Google Scholar 

  • Pond S, Phelps GT, Paquin JE, McBean G, Stewart RW (1971) Measurements of the turbulent fluxes of momentum, moisture and sensible heat over the ocean. J Atmos Sci 28: 901–917

    Article  Google Scholar 

  • Rutgersson A, Smedman A (2010) Enhanced air–sea CO2 transfer due to water-side convection. J Mar Syst 80: 125–134

    Article  Google Scholar 

  • Rutgersson A, Smedman A, Omstedt A (2001) Measured and simulated latent and sensible heat fluxes at two marine sites in the Baltic Sea. Boundary-Layer Meteorol 99: 53–84

    Article  Google Scholar 

  • Rutgersson A, Norman M, Schneider B, Pettersson H, Sahlée E (2008) The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper. J Mar Syst 74(1–2): 381–394

    Article  Google Scholar 

  • Rutgersson A, Smedman A, Sahlée E (2011) Oceanic convective mixing and the impact on air–sea gas transfer velocity. Geophys Res Lett 38: L02602

    Article  Google Scholar 

  • Sahlée E, Smedman A, Rutgersson A, Högstrom U (2008) Spectra of CO2 and water vapour in the marine atmospheric surface layer. Boundary-Layer Meteorol 126(2): 279–295

    Article  Google Scholar 

  • Schmitt KF, Friehe CA, Gibson CH (1979) Structure of marine surface layer turbulence. J Atmos Sci 36: 602–618

    Article  Google Scholar 

  • Semedo A, Sušelj K, Rutgersson A, Sterl A (2010) A global view on the wind sea and swell climate and variability from ERA-40. J Clim 24: 1461–1479

    Article  Google Scholar 

  • Shao Y (1995) Correction of turbulent wind measurements contaminated by irregular motion of a ship. TOGA-COARE project, technical report 70. CSIRO, Centre for Environmental Mechanics

  • Sjöblom A, Smedman A (2002) The turbulent kinetic energy budget in the marine atmospheric surface layer. J Geophys Res 107(C10): 3142

    Article  Google Scholar 

  • Sjöblom A, Smedman A (2003) Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Boundary-Layer Meteorol 109: 1–25

    Article  Google Scholar 

  • Sjöblom A, Smedman A (2004) Comparison between eddy-correlation and inertial dissipation methods in the marine atmospheric surface layer. Boundary-Layer Meteorol 110(2): 141–164

    Article  Google Scholar 

  • Smedman A, Högström U, Sjöblom A (2003) A note on velocity spectra in the marine boundary layer. Boundary-Layer Meteorol 109: 27–48

    Article  Google Scholar 

  • Smith SD (1988) Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J Geophys Res 93: 15467–15472

    Article  Google Scholar 

  • Smith SD, Anderson RJ (1984) Spectra of humidity, temperature and wind over the sea at Sable Island, Nova Scotia. J Geophys Res 91: 10529–10532

    Article  Google Scholar 

  • Sørensen LL, Larsen SE (2010) Atmosphere–surface fluxes of CO2 using spectral techniques. Boundary-Layer Meteorol 136: 59–81

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Sabine C, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Körtzinger A, Steinhoff T, Hoppema M, de Baar HJW, Wong CS, Delille B, Bates NR (2009) Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res II 56: 554–577

    Article  Google Scholar 

  • Verma S, Anderson D (1984) Kolmogorov constants for CO2, wind velocity, air-temperature, and humidity fluctuations over a crop surface. Boundary-Layer Meteorol 28: 161–167

    Article  Google Scholar 

  • Vickers D, Mahrt L (2006) Contrasting mean vertical motion from tilt correction methods and mass continuity. Agric Forest Meteorol 138: 93–103

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res 97: 7373–7382

    Article  Google Scholar 

  • Wanninkhof R, McGillis W (1999) A cubic relationship between air–sea CO2 exchange and wind speed. Geophys Res Lett 26: 1889–1892

    Article  Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeny C, McGillis W (2009) Advances in quantifying air–sea gas exchange and environmental forcing. Annu Rev Mar Sci 1: 213–244

    Article  Google Scholar 

  • Watson AJ, Upstill-Goddard RC, Lis PS (1991) Air–sea exchange in rough and stormy seas, measured by a dual tracer technique. Nature 349: 145–147

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106: 85–100

    Article  Google Scholar 

  • Weiss A, Kuss J, Peters G, Schneider B (2007) Evaluating transfer velocity–wind speed relationship using a long-term series of direct eddy covariance CO2 flux measurements. J Mar Syst 66: 130–139

    Article  Google Scholar 

  • Woolf D (2005) Parametrization of gas transfer velocities and sea-state-dependent wave breaking. Tellus B 57(2): 87–94

    Article  Google Scholar 

  • Yelland MJ, Taylor PK (1996) Wind stress measurements fom the open ocean. J Phys Oceanogr 26: 541–558

    Article  Google Scholar 

  • Zhao D, Toba Y, Suzuki Y, Komori S (2003) Effect of wind waves on air–sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter. Tellus B 55(2): 478–487

    Article  Google Scholar 

  • Zilitinkevich SS, Chalikov DV (1968) Determining the universal wind-velocity and temperature profiles in the atmospheric boundary layer. Izv Atmos Oceanic Phys 4: 294–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Norman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norman, M., Rutgersson, A., Sørensen, L.L. et al. Methods for Estimating Air–Sea Fluxes of CO2 Using High-Frequency Measurements. Boundary-Layer Meteorol 144, 379–400 (2012). https://doi.org/10.1007/s10546-012-9730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9730-9

Keywords

Navigation