Skip to main content
Log in

Long-Term Evaluation of the Scintec Boundary-Layer Scintillometer and the Wageningen Large-Aperture Scintillometer: Implications for Scintillometer Users

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We compare the structure parameter of the refractive index, \(C_{nn}\), measured simultaneously with two large-aperture scintillometers: the WagLAS (Wageningen University, Wageningen, the Netherlands) and the BLS900 (Scintec, Rottenburg, Germany). A 3.5-year dataset shows a bias in \(C_{nn}\) of about 17 % between the instruments. Analysis of these data reveals firstly that the logarithmic amplifiers in the WagLAS exhibit a strong dependence on temperature, resulting in an overestimation of \(C_{nn}\) of up to 35 % for temperatures \(<\)0 \(^{\circ }\hbox {C}\). Secondly, high-pass filtering of the WagLAS and BLS900 intensity data artificially reduces \(C_{nn}\) for crosswinds \(<\)2 \(\hbox {m\,s}^{-1}\) (error \(\le \)25 and \(\le \)5 % respectively). Thirdly, the BLS900 increasingly underestimates \(C_{nn}\) (up to 10–15 %) with increasing signal saturation. We demonstrate that Scintec’s data processing relies too heavily on the assumption that the intensity data obey a log-normal distribution, which they do not in the case of saturation. Fourthly, both instruments ignore the dissipation range of the refractive-index spectrum, which leads to an overestimation of \(C_{nn}\) of up to 30 % for friction velocity \(<\)0.2 \(\hbox {m\, s}^{-1}\). Implications of these findings are discussed and placed into perspective for other scintillometer users. Furthermore, we present a tool for revealing saturation and other violations of Rytov theory for any given scintillometer type, including microwave scintillometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The SRun program stored the data in BASE64 binary format (as specified in RFC 2045) in the so-called raw-data files. Decoding was done with MATLAB (Mathworks, 2014a) using a Java-based decoding algorithm provided by Scintec.

  2. Calibration is done by adjusting the output signal of a logarithmic amplifier to a given input signal: the scaling must be such that one-order-of-magnitude change in the input signal results in a 2-V change in the output signal.

  3. Upon communication of the authors, the filter frequency of the MKII has been reduced to 0.1 Hz as of summer 2014 (Kipp & Zonen, personal communication, 2014).

References

  • Beyrich F, Adam WK (2007) Site and data report for the lindenberg reference site in CEOP—Phase I. Berichte des Deutschen Wetterdienstes 230, Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main, Germany, ISSN 0072–4130, 55 pp

  • Beyrich F, Bange J, Hartogensis OK, Raasch S, Braam M, van Dinther D, Gräf D, Van Kesteren B, Van den Kroonenberg AC, Maronga B, Martin S, Moene AF (2012) Towards a validation of scintillometer measurements: the LITFASS-2009 experiment. Boundary-Layer Meteorol 144:83–112

    Article  Google Scholar 

  • Beyrich F, De Bruin HAR, Meijninger WML, Schipper JW, Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105:85–97

    Article  Google Scholar 

  • Beyrich F, Leps JP, Mauder M, Bange J, Foken T, Huneke S, Lohse H, Lüdi A, Meijninger WML, Mironov D, Weisensee U, Zittel P (2006) Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements. Boundary-Layer Meteorol 121:33–65

    Article  Google Scholar 

  • Braam M (2014) Validation of \(C_{n}^{2}\) observed from two LAS during the LITFASS-2009 experiment. In: Aspects of atmospheric turbulence related to scintillometry. PhD-thesis, Wageningen University, Wageningen, the Netherlands, 154 pp

  • Braam M, Moene AF, Beyrich F, Holtslag AAM (2014) Similarity relations for \(C_{T}^{2}\) in the unstable atmospheric surface layer: dependence on regression approach, observation height and stability range. Boundary-Layer Meteorol 153:63–87

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Chehbouni A, Watts C, Lagouarde JP, Kerr YH, Rodriguez JC, Bonnefond JM, Santiago F, Dedieu G, Goodrich DC, Unkrich C (2000) Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer. Agric For Meteorol 105:215–226

    Article  Google Scholar 

  • Clifford SF, Ochs GR, Lawrence RS (1974) Saturation of optical scintillation by strong turbulence. J Opt Soc Am 64:148–154

    Article  Google Scholar 

  • De Bruin HAR, Van den Hurk B, Kohsiek W (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76:25–40

    Article  Google Scholar 

  • Evans JG, McNeil DD, Finch JW, Murray T, Harding RJ, Ward HC, Verhoef A (2012) Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain. Agric For Meteorol 166–167:221–233

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A, Hoedjes JCB, Er-Raki S, Chehbouni A, Boulet G, Bonnefond JM, De Bruin HAR (2007) The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region. Agric Water Manag 89:173–184

    Article  Google Scholar 

  • Ezzahar J, Chehbouni A, Er-Raki S, Hanich L (2009) Combining a large aperture scintillometer and estimates of available energy to derive evapotranspiration over several agricultural fields in a semi-arid region. Plant Biosyst 143:209–221

    Article  Google Scholar 

  • Frenzen P, Vogel CA (1992) The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental re-examination in the field. Boundary-Layer Meteorol 60:49–76

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Bradley EF (2000) Convective profile constants revisited. Boundary-Layer Meteorol 94:495–515

    Article  Google Scholar 

  • Green AE, Green SR, Astill MS, Caspari HW (2000) Estimating latent heat flux from a vineyard using scintillometry. Terrestrial Atmos Oceanic Sci 11:525–542

    Google Scholar 

  • Hartogensis OK, De Bruin HAR, Van de Wiel BJH (2002) Displaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment. Boundary-Layer Meteorol 105(1):149–176

    Article  Google Scholar 

  • Hartogensis OK, De Bruin HAR (2005) Monin-Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116:253–276

    Article  Google Scholar 

  • Hartogensis OK (2006) Appendix 5A Inner scale sensitivity of the LAS. In: Exploring scintillometry in the stable atmospheric surface layer, Wageningen University, Wageningen, 227 pp

  • Heusinkveld BG (2008) Appendix Wageningen UR Scintillometer design. In: On dew and micrometeorology in an arid coastal ecosystem, PhD Thesis, Wageningen University, Wageningen, 197 pp

  • Hill RJ, Clifford SF (1978) Modified spectrum of atmospheric-temperature fluctuations and its application to optical propagation. J Opt Soc Am 68(7):892–899

    Article  Google Scholar 

  • Hill RJ, Frehlich RG (1997) Probability distribution of irradiance for the onset of strong scintillation. J Opt Soc Am A 14:1530–1540

    Article  Google Scholar 

  • Hill RJ, Ochs GR (1978) Fine calibration of large-aperture optical scintillometers and an optical estimate of inner scale of turbulence. Appl Opt 17:3608–3612

    Article  Google Scholar 

  • Kleissl J, Gomez J, Hong SH, Hendrickx JMH, Rahn T, Defoor WL (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128:133–150

    Article  Google Scholar 

  • Kleissl J, Hong SH, Hendrickx JMH (2009a) New Mexico scintillometer network supporting remote sensing and hydrologic and meteorological models. Bull Am Meteorol Soc 90:207–218

    Article  Google Scholar 

  • Kleissl J, Watts CJ, Rodriguez JC, Naif S, Vivoni ER (2009b) Scintillometer intercomparison study-continued. Boundary-Layer Meteorol 130:437–443

    Article  Google Scholar 

  • Kleissl J, Hartogensis OK, Gomez J (2010) Test of scintillometer saturation correction methods using field experimental data. Boundary-Layer Meteorol 137:493–507

    Article  Google Scholar 

  • Lagouarde JP, Irvine M, Bonnefond JM, Grimmond CSB, Long N, Oke TR, Salmond JA, Offerle B (2006) Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the ESCOMPTE experiment. Boundary-Layer Meteorol 118:449–476

    Article  Google Scholar 

  • Lagouarde JP, Chehbouni B, Bonnefond JM, Rodriguez JC, Kerr YH, Watts C, Irvine M (2000) Analysis of the limits of the \(C_{T}^{2}\)-profile method for sensible heat flux measurements in unstable conditions. Agric For Meteorol 105:195–214

    Article  Google Scholar 

  • Lawrence RS, Strohbehn JW (1970) A survey of clear-air propagation effects relevant to optical communications. Proc IEEE 58:1523–1545

    Article  Google Scholar 

  • Lawrence RS, Ochs GR, Clifford SF (1972) Use of scintillations to measure average wind across a light beam. Appl Opt 11:239–243

    Article  Google Scholar 

  • Lüdi A, Beyrich F, Mätzler C (2005) Determination of the turbulent temperature-humidity correlation from scintillometric measurements. Boundary-Layer Meteorol 117:525–550

    Article  Google Scholar 

  • Maronga B (2014) Monin-Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: results from high-resolution large-eddy simulations. J Atmos Sci 71:716–733

    Article  Google Scholar 

  • Maronga B, Hartogensis OK, Raasch S, Beyrich F (2014) The effect of surface heterogeneity on the structure parameters of temperature and specific humidity: a large-eddy simulation case study for the LITFASS-2003 experiment. Boundary-Layer Meteorol 153:441–470

    Article  Google Scholar 

  • Marx A, Kunstmann H, Schüttemeyer D, Moene AF (2008) Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results. Agric For Meteorol 148:656–667

    Article  Google Scholar 

  • Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002a) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105:63–83

    Article  Google Scholar 

  • Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002b) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105:37–62

    Article  Google Scholar 

  • Meijninger WML (2003) Surface fluxes over natural landscapes using scintillometry. PhD Thesis, Wageningen University, Wageningen, 164 pp

  • Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121:89–110

    Article  Google Scholar 

  • Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107(3):635–653

    Article  Google Scholar 

  • Moene AF, Meijninger WML, Hartogensis OK, Heusinkveld BG, De Bruin HAR (2005) The effect of finite accuracy in the manufacturing of large-aperture scintillometers. Wageningen University, Wageningen

    Google Scholar 

  • Moene AF, Van Dam JC (2014) Transport in the atmosphere-vegetation-soil continuum. Cambridge University Press, New York 446 pp

    Google Scholar 

  • Monin AS, Yaglom AM (1975) Statistical fluid mechanics: Mechanics of turbulence 2. The MIT Press, London, 874 pp

  • Nieveen JP, Green AE, Kohsiek W (1998) using a large-aperture scintillometer to measure absorption and refractive index fluctuations. Boundary-Layer Meteorol 87:101–116

    Article  Google Scholar 

  • Obukhov AM (1953) On the influence of weak atmospheric inhomogeneities on the propagation of sound and light. Izv Akad Nauk SSSR Ser Geofiz 2:155

    Google Scholar 

  • Ochs GR, Wang T (1978) Finite aperture optical scintillometer for profiling wind and \(C_{n}^{2}\). Appl Opt 17:3774–3778

    Article  Google Scholar 

  • Potvin G, Dion D, Forand JL (2005) Wind effects on scintillation decorrelation times. Opt Eng 44:016001

    Article  Google Scholar 

  • Rambikur EH, Chávez JL (2014) Assessing inter-sensor variability and sensible heat flux derivation accuracy for a large aperture scintillometer. Sensors 14:2150–2170

    Article  Google Scholar 

  • Samain B, Ferket BVA, Defloor W, Pauwels VRN (2011a) Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer. Water Resour Res 47:W05536

    Article  Google Scholar 

  • Samain B, Simons GWH, Voogt MP, Defloor W, Bink N-J, Pauwels VRN (2011b) Consistency between hydrological model, large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment. Hydrol Earth Syst Sci 8:10863–10894

    Article  Google Scholar 

  • Savage MJ (2009) Estimation of evaporation using a dual-beam surface layer scintillometer and component energy balance measurements. Agric For Meteorol 149:501–517

    Article  Google Scholar 

  • Scintec (2013) Scintec boundary layer scintillometer BLS450, BLS900, BLS2000 hardware manual. Scintec AG, Rottenburg, 66 pp

  • Solignac PA, Brut A, Selves JL, Béteille JP, Gastellu-Etchegorry JP (2012) Attenuating the absorption contribution on \(C_{n}^{2}\) estimates with a large-aperture scintillometer. Boundary-Layer Meteorol 143:261–283

    Article  Google Scholar 

  • Strohbehn JW (1968) Line-of-sight wave propagation through turbulent atmosphere. Proc IEEE 56:1301–1318

    Article  Google Scholar 

  • Tatarskii VI (1961) Wave propagation in a turbulent medium. McGraw-Hill Book Company Inc, New York 285 pp

    Google Scholar 

  • Tatarskii VI (1971) The effects of the turbulent atmosphere on wave propagation, (translated from Russian by the Israel Program for Scientific Translations. Jerusalem, 456 pp

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58:367–389

    Article  Google Scholar 

  • Van Dinther D, Hartogensis OK, Moene AF (2013) Crosswinds from a single-aperture scintillometer using spectral techniques. J Atmos Oceanic Technol 30:3–21

    Article  Google Scholar 

  • Van Dinther D, Hartogensis OK (2014) Using the time-lag correlation function of dual-aperture scintillometer measurements to obtain the crosswind. J Atmos Oceanic Technol 31:62–78

    Article  Google Scholar 

  • Van Kesteren B, Hartogensis OK (2011) Analysis of the systematic errors found in the Kipp & Zonen large aperture scintillometer. Boundary-Layer Meteorol 138:493–509

    Article  Google Scholar 

  • Van Kesteren B, Beyrich F, Hartogensis OK, van den Kroonenberg AC (2014) The effect of a new calibration procedure on the measurement accuracy of Scintec’s displaced-beam laser Scintillometer. Boundary-Layer Meteorol 151:257–271

    Article  Google Scholar 

  • Vetelino FS, Young C, Andrews L, Recolons J (2007) Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence. Opt Soc Am 46:2099–2108

    Google Scholar 

  • Wang TI, Ochs GR, Clifford SF (1978) Saturation-resistant optical scintillometer to measure \(C_{n}^{2}\). J Opt Soc Am 68:334–338

    Article  Google Scholar 

  • Ward HC, Evans JG, Grimmond CSB (2011) Effects of non-uniform crosswind fields on scintillometry measurements. Boundary-Layer Meteorol 141:143–163

    Article  Google Scholar 

  • Ward HC, Evans JG, Hartogensis OK, Moene AF, De Bruin HAR, Grimmond CSB (2013) A critical revision of the estimation of the latent heat flux from two-wavelength scintillometry. Q J R Meteorol Soc 139:1912–1922

    Article  Google Scholar 

  • Ward HC, Evans JG, Grimmond CSB (2014) Multi-scale sensible heat fluxes in the suburban environment from large-aperture scintillometry and eddy covariance. Boundary-Layer Meteorol 152:65–89

    Article  Google Scholar 

  • Watts CJ, Chehbouni A, Rodriguez JC, Kerr YH, Hartogensis OK, De Bruin HAR (2000) Comparison of sensible heat flux estimates using AVHRR with scintillometer measurements over semi-arid grassland in northwest Mexico. Agric For Meteorol 105:81–89

    Article  Google Scholar 

  • Wheelon AD (2001) Skewed distribution of irradiance predicted by second-order Rytov approximation. J Opt Soc Am A 18:2789–2798

    Article  Google Scholar 

  • Wood CR, Kouznetsov RD, Gierens R, Nordbo A, Järvi L, Kallistratova MA, Kukkonen J (2013) On the temperature structure parameter and sensible heat flux over Helsinki from sonic anemometry and scintillometry. J Atmos Ocean Technol 30:1604–1615

    Article  Google Scholar 

  • Wyngaard JC, Clifford SF (1978) Estimating momentum, heat and moisture fluxes from structure parameters. J Atmos Sci 35:1204–1211

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Petra Dereszynski, Sieghard Niesche and Ulrich Weisensee for their commitment in maintaining the scintillometers in optimal operational service, so ensuring the high data quality. Furthermore, the authors thank Henk de Bruin for discussion and support and Evert-Jan Bakker for his assistance in understanding the log-normal data distribution. Finally, we thank three anonymous reviewers for their feedback, which greatly improved the manuscript. The data analysis was supported by internal project funding of the German Federal Ministry of Transport, Building and Urban Development under project number SFP 1-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Van Kesteren.

Appendices

Appendix 1

Scintillometer theory describes the relation between \(\sigma _{\mathrm{ln}\left( I \right) }^2 \) and \(C_{nn}\) by combining wave-propagation and turbulence theory through directly solving the wave equation for a scattered wave. In a charge-free atmosphere with constant magnetic permeability and neglecting polarisation effects, the wave equation becomes (Tatarskii 1961; Lawrence and Strohbehn 1970),

$$\begin{aligned} \Delta E\left( {\left| {\vec {r}} \right| } \right) +\kappa ^{2}n^{2}\left( {\left| {\vec {r}} \right| } \right) E\left( {\left| {\vec {r}} \right| } \right) =0, \end{aligned}$$
(11)

where \(E(\left| {\vec {r}} \right| )\) is the vertical component of the electric field belonging to the electromagnetic wave, defined as \(E=A\hbox {e}^{iS}\), with \(A\) the amplitude and \(S\) the phase, \(\left| {\vec {r}} \right| \) is the distance between two observation points in the field, and \(n(\left| {\vec {r}} \right| )\) is the refractive-index field.

For solving Eq. 11, the Rytov method is used, which consists of applying a perturbation technique to the exponent of \(E\) (Vetelino et al. 2007). Hence, substituting \(E = \hbox {e}^{\varPsi }\) into Eq. 11 and writing \(\varPsi = \chi + iS\), the wave equation becomes the Riccati equation (Tatarskii 1961; Strohbehn 1968),

$$\begin{aligned} \Delta \psi \left( {\left| {\vec {r}} \right| } \right) +\nabla \psi \left( {\left| {\vec {r}} \right| } \right) \cdot \nabla \psi \left( {\left| {\vec {r}} \right| } \right) +\kappa ^{2}n^{2}\left( {\left| {\vec {r}} \right| } \right) =0, \end{aligned}$$
(12)

where the logarithmic amplitude, \(\chi \equiv \hbox { ln}(A)\), is the real and \(S\) is the imaginary part of \(\varPsi \) (Obukhov 1953; Strohbehn 1968).

Subsequently, perturbation technique is applied, whereby \(\varPsi \) is expanded into a linear series \(\varPsi =\varPsi _{0} + \varPsi _{1} + {\cdots } + \varPsi _{\infty }\). Under the assumption that only single scattering occurs, i.e. neglecting the higher order terms \(\varPsi _{2}, \varPsi _{3}\), etc., the Ricatti equation becomes (Tatarskii 1961)

$$\begin{aligned} \Delta \psi _1 \left( {\left| {\vec {r}} \right| } \right) +2\nabla \psi _0 \left( {\left| {\vec {r}} \right| } \right) \cdot \nabla \psi _1 \left( {\left| {\vec {r}} \right| } \right) +2\kappa ^{2}n_1 ^{2}\left( {\left| {\vec {r}} \right| } \right) =0, \end{aligned}$$
(13)

where \(n_1 \left( {\left| {\vec {r}} \right| } \right) =n\left( {\left| {\vec {r}} \right| } \right) -1\) (assuming \(\overline{n} \left( {\left| {\vec {r}} \right| } \right) =1\) and \(n_1 \left( {\left| {\vec {r}} \right| } \right) < < 1)\). Equation 13 has a solution, from which one may derive Eq. 1 with a few more assumptions regarding atmospheric turbulence (Tatarskii 1961, 1971). Note, that the derivation is done for \(\sigma _\chi ^2 \), but that \(\sigma _{\mathrm{ln}\left( I \right) }^2 \) is measured. Since \(I=A^{2}\), they relate to each other through the equality \(\sigma _\chi ^2 = 0.25\sigma _{\mathrm{ln}\left( I \right) }^2 \) (Lawrence and Strohbehn 1970).

Appendix 2

For achieving the desired scaling of the WagLAS instrument’s output signal, four steps are involved (the following is adapted from Meijninger 2003, see p.143 onwards for the original text and diagram): first, the intensity signal passes a logarithmic amplifier for conversion from \(I\) to \(\hbox {ln}(I)\). Second, after the logarithmic amplifier the signal is amplified or debilitated by an amplifier, the gain of which depends on the length of the scintillometer path, each WagLAS instrument has a potentiometer to set the correct gain for this amplifier. Third, the signal is band-pass filtered between 0.1 and 400 Hz to remove noise from the carrier frequency and demodulator, and to remove fluctuations due to undesired scattering and absorption (Nieveen et al. 1998). Finally, the signal passes through a second logarithmic amplifier in root-mean-square mode, giving the logarithm of the variance of its input signal. Consequently, the final output is a voltage proportional to \(C_{nn}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Kesteren, B., Beyrich, F., Hartogensis, O. et al. Long-Term Evaluation of the Scintec Boundary-Layer Scintillometer and the Wageningen Large-Aperture Scintillometer: Implications for Scintillometer Users. Boundary-Layer Meteorol 156, 303–323 (2015). https://doi.org/10.1007/s10546-015-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0023-y

Keywords

Navigation