Skip to main content
Log in

On the Influence of a Simple Microphysics Parametrization on Radiation Fog Modelling: A Case Study During ParisFog

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A detailed numerical simulation of a radiation fog event with a single column model is presented, which takes into account recent developments in microphysical parametrizations. One-dimensional simulations are performed using the computational fluid dynamics model Code_Saturne and the results are compared to a very detailed in situ dataset collected during the ParisFog campaign, which took place near Paris, France, during the winter 2006–2007. Special attention is given to the detailed and complete diurnal simulations and to the role of microphysics in the fog life cycle. The comparison between the simulated and the observed visibility, in the single-column model case study, shows that the evolution of radiation fog is correctly simulated. Sensitivity simulations show that fog development and dissipation are sensitive to the droplet-size distribution through sedimentation/deposition processes but the aerosol number concentration in the coarse mode has a low impact on the time of fog formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Archambeau F, Méchitoua N, Sakiz M (2004) Code\_Saturne: a finite volume code for the computation of turbulent incompressible flows—industrial applications. Int J Finite 1:1–62

    Google Scholar 

  • Abdul-Razzak H, Ghan S, Rivora-Carpio C (1998) A parametrization of aerosol activation. 1. Single aerosol types. J Geophys Res 103:6123–6131

    Article  Google Scholar 

  • Abdul-Razzak H, Ghan S (2000) A parametrization of aerosol activation. 2. Multiple aerosol types. J Geophys Res 105:6837–6844

    Article  Google Scholar 

  • Bergot T, Carrer D, Noilhan J, Bougeault P (2005) Improved site-specific numerical prediction of fog and low clouds: a feasibility study. Weather Forecast 20:627–646

    Article  Google Scholar 

  • Bergot T, Terradellas E, Cuxart J, Mira A, Müller OLM, Nielsen N (2007) Intercomparison of single-column numerical models for the prediction of radiation fog. J Appl Meteorol Clim 46:504–521

    Article  Google Scholar 

  • Bergot T, Haeffelin M, Musson-Genon L, Tardif R, Colomb M, Boitel C, Bouhours G, Bourriane T, Carrer D, Challet J, Chazette P, Drobinski P, Dupont E, Dupont J-C, Elias T, Fesquet C, Garrouste O, Gomes L, Guerin A, Lapouge F, Lefranc Y, Legain D, Morange P, Pietras C, Plana-Fattori A, Protat A, Rangognio J, Raut J-C, Remy S, Richard D, Romand B, Zhang X (2008) Paris-Fog: des chercheurs dans le brouillard. La Météorol 62:48–58

    Article  Google Scholar 

  • Betts AK (1973) Non-precipitating cumulus convection and its parametrization. Q J R Meteorol Soc 99:178–196

    Article  Google Scholar 

  • Bott A (1991) On the influence of the physic-chemical properties of aerosols on the life cycle of radiation fogs. Boundary-Layer Meteorol 56:1–31

    Article  Google Scholar 

  • Bott A, Trautmann T (2002) PAFOG—a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos Res 64:191–203

    Article  Google Scholar 

  • Bougeault P (1985) The diurnal cycle of the marine stratocumulus layer: a higher-order model study. J Atmos Sci 42:2826–2843

    Article  Google Scholar 

  • Bouzereau E, Musson-Genon L, Carissimo B (2008) Application of a semi-spectral cloud water parametrization to cooling tower plumes simulations. Atmos Res 90:78–90

    Article  Google Scholar 

  • Bouzereau E, Musson-Genon L, Carissimo B (2007) On the definition of the cloud water content fluctuations and its effects on the computation of a second-order liquid water correlation. J Atmos Sci 64:665–669

    Article  Google Scholar 

  • Brown R, Roach WT (1976) The physic of radiation fog: II—anumerical study. Q J R Meteorol Soc 102:335–354

    Google Scholar 

  • Brown R (1980) A numerical study of radiation fog with an explicit formulation of the microphysics. Q J R Meteorol Soc 106:781–802

    Article  Google Scholar 

  • Cohard J, Pinty J, Bedos C (1998) Extending Twomeys analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J Atmos Sci 55:3348–3357

    Article  Google Scholar 

  • Corradini C, Tonna G (1980) The parameterization of the gravitational water flux in fog models. J. Atmos Sci 37:2535–2539

    Article  Google Scholar 

  • Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87:367–374

    Article  Google Scholar 

  • Deardorff J (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 83:1889–1903

    Article  Google Scholar 

  • Duynkerke P, Driedonks K (1987) Turbulent structure of a shear-driven stratus\_topped atmospheric boundary layer: a comparison of model results with observations. J Atmos Sci 45:2343–2451

    Article  Google Scholar 

  • Duynkerke P (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Weather Rev 119:324–341

    Article  Google Scholar 

  • Elias T, Haeffelin M, Drobinski P, Gomes L, Rangognio J, Bergot T, Chazette P, Raut C, Colomb M (2009) Particulate contribution in extinction of visible radiation: pollution, haze and fog. Atmos Res 92:443–454

    Article  Google Scholar 

  • Fuzzi S, Facchini M, Orsi J, Lind J, Wobrock W, Kessel M, Maser R, Jaeschke W, Enderle K, Arends B, Berner A, Solly I, Kruisz C, Reischl G, Pahd S, Kaminski U, Winkler P, Ogren J, Noone K, Halberg A, Fierlinger O, Oberlinninger H, PuxBaum H, Marzorati A, Hansson H, Wiedensohler A, Svenningsson I, Martinsson B, Schell D, Georggi H (1992) The Po Valley fog experiment 1989: an overview. Tellus 44:448–468

    Article  Google Scholar 

  • Fuzzi S, Laj P, Ricci L, Orsi G, Heintzenberg J, Wendisch M, Yuskiewicz B, Mertes S, Orsini D, Wiedensohler MSA, Stratmann F, Berg O, Swietlicki E, Frank G, Martinsson B, Günther A, Dierssen J, Schell D, Jaeschke W, Berner A, Dusek U, Galambos Z, Kruisz C, Mesfin S, Wobrock W, Arends B, Brink H (1998) Overview of the Po Valley fog experiment 1994 (CHEMDROP). Contrib Atmos Phys 71:3–19

    Google Scholar 

  • Guedalia D, Bergot T (1994) Numerical forecasting of radiation fog. Part II: a comparison of model simulation with several observed fog events. Mon Weather Rev 122:1231–1246

    Article  Google Scholar 

  • Gultepe I, Muller M, Boybeyi Z (2006) A new visibility parametrization for warm-fog applications in numerical weather prediction models. J Appl Meteorol Clim 45:1469–1480

    Article  Google Scholar 

  • Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Mûller MD, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007) Fog research: a review of past achievements and perspectives. Pure Appl Geophys 164:1121–1159

    Article  Google Scholar 

  • Gultepe I, Pearson G, Milbrandt JA, Hausen B, Platnick S, Taylor P, Gordon M, Oakley JP, Cober SG (2009) The fog remote sensing and modelling field project. Bull Am Meteorol Soc. doi:10.1175/2008BAMS2534: 341–359

  • Haeffelin M, Bergot T, Elias T, Carrer D, Chazette P, Colomb M, Drobinski P, Dupont J-C, Dupont E, Gomes L, Musson-Genon L, Pietras C, Plana-Fattori A, Protat A, Rangonio J, Raut J-C, Remy S, Richard D, Sciare J, Zhang X (2010) ParisFog, shedding new light on fog physical processes. Bull Am Meteorol Soc 91(6):767–783

    Article  Google Scholar 

  • Joseph J, Wiscombe W, Weinman J (1976) The delta-Eddington approximation for radiative flux transfer. J Atmos Sci 33:2452–2459

    Article  Google Scholar 

  • Klemm O, Wrzesinsky P (2007) Fog deposition fluxes of water and ions to a mountainous site in Central Europe. Tellus 59:705–714

    Article  Google Scholar 

  • Kunkel B (1984) Parameterization of droplet terminal velocity and extinction coefficient in fogs model. J Appl Meteorol 23:34–41

    Article  Google Scholar 

  • Lacis A, Hansen J (1974) A parametrization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  • Meyer M, Lala G, Jiusto J (1986) Fog-82: a cooperative field study of radiation fog. Bull Am Meteorol Soc 67:825–832

    Article  Google Scholar 

  • Müller M, Schmutz C, Parlow E (2007) A one-dimensional ensemble fog forecast and assimilation system for fog prediction. Pure Appl Geophys 164:1241–1264

    Article  Google Scholar 

  • Musson-Genon L (1987) Numerical simulation of a fog event with a one-dimensional boundary layer model. Mon Weather Rev 115:592–607

    Article  Google Scholar 

  • Musson-Genon L (1995) Comparison of different simple turbulence closures with an one-dimensional boundary layer model. Mon Weather Rev 123:163–180

    Article  Google Scholar 

  • Musson-Genon L, Dupont E, Wendum D (2007) Reconstruction of the surface-layer vertical structure from measurements of wind, temperature and humidity at two levels. Boundary-Layer Meteorol 124:235–250

    Article  Google Scholar 

  • Leighton H (1980) Application to the delta-Eddington method to the absorption of solar radiation in the atmosphere. Atmos Ocean 18:43–52

    Article  Google Scholar 

  • Nakanishi M (2000) Large-eddy simulation of radiation fog. Boundary-Layer Meteorol 94:461–493

    Article  Google Scholar 

  • Porson A, Price J, Luck A, Clark P (2011) Radiation fog. Part II: large eddy simulations in very stable conditions. Boundary-Layer Meteorol 139:193–224

    Article  Google Scholar 

  • Price J (2011) Radiation fog. Part I: observations of stability and drop size distributions. Boundary-Layer Meteorol 139:167–191

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Kluwer, Dordrecht

    Google Scholar 

  • Rangognio J (2009) Impact des aérosols sur le cycle de vie du brouillard, de l’observation à la modélisation. Ph.D. Thesis, Université Paul Sabatier, Toulouse III, 258 pp

  • Rangognio J, Tullet P, Bergot T, Gomes L, Thouron O, Leriche M (2009) Influence of aerosols on the formation and development of radiation fog. Atmo Phys Chem Dis 9:17963–18019

    Google Scholar 

  • Ritter A, Regalado CM, Aschan G (2008) Fog water collection in a subtropical Elfin Laurel Forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based impaction model. J Hydrometeorol 9:920–935

    Article  Google Scholar 

  • Roach WT, Brown R, Caughey SJ, Garland JA, Readings CJ (1976) The physic of radiation fog: I—a field study. Q J R Meteorol Soc 102:313–333

    Google Scholar 

  • Roquelaure S, Bergot T (2008) A local ensemble prediction system for fog and low clouds: construction, Bayesian model averaging calibration, and validation. J Appl Meteorol Clim 47:3072–3088

    Article  Google Scholar 

  • Sandu I, Tulet P, Brenguier J (2005) Parametrization of the cloud droplet single scattering albedo based on aerosol chemical composition for LES modelling of boundary layer clouds. Geophys Res Lett 32:19814.1–19814.4

    Google Scholar 

  • Sartelet KN, Hayami H, Albriet B, Sportisse B (2005) Development and preliminary validation of a Modal Aerosol Model for tropospheric chemistry: MAM. Aerosol Sci Technol 40(2):118–127

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda HG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR, 113 pp

  • Seigneur C, Hudischewskyj AB, Seinfeld JH, Whitby KT, Whitby ER, Brock JR, Barnes HM (1986) Simulation of aerosol dynamics: a comparative review of mathematical models. Aerosol Sci Technol 5:205–222

    Article  Google Scholar 

  • Tardif R (2007) The impact of vertical resolution in the explicit numerical forecasting of radiation fog: a case study. Pure Appl Geophys 164:1221–1240

    Article  Google Scholar 

  • Tombette M, Chazette P, Sportisse B, Roustan Y (2008) Simulation of aerosol optical properties over Europe with a 3-D size-resolved aerosol model: comparisons with AERONET data. Atmos Chem Phys 8:7115–7132

    Article  Google Scholar 

  • von Glasow R, Bott A (1999) Interaction of radiation fog with tall vegetation. Atmos Environ 33:1333–1346

    Article  Google Scholar 

  • Zaïdi H, Dupont E, Milliez M, Musson Genon L, Carissimo B (2012) Numerical simulations of the micro-scale heterogeneities of turbulence observed on a complex site. Boundary-Layer Meteorol 147:237–259

    Article  Google Scholar 

  • Zhang Y, Seigneur C, Seinfeld JH, Jacobson MZ, Binkowski F (1999) Simulation of aerosol dynamics: a comparative review of algorithms used in air quality models. Aerosol Sci Technol 31:487–514

    Article  Google Scholar 

  • Zhang L, Gong S, Padro J, Barrie L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35:549–560

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the Ph.D. thesis of Xiaojing Zhang, as part of the ParisFog project supported by Institut Pierre-Simon Laplace (IPSL), Centre National de Recherches Météorologiques (CNRM), and the Atmospheric Environment Teaching and Research Center (CEREA). We gratefully thank all the people who have worked during the ParisFog campaign. Special thanks are also due to Thierry Bergot, Jérôme Rangognio, Martial Haeffelin and Jean-Charles Dupont for useful discussions and comments during the Ph.D. thesis of Xiaojing Zhang and to the unknown reviewer for their very detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Musson-Genon.

Appendix

Appendix

1.1 Model Equations

1.1.1 Dynamic Equations

The dynamic equations are written as

$$\begin{aligned} \frac{\partial U}{\partial t}=\frac{\partial }{\partial z}\left( {K\frac{\partial U}{\partial z}} \right) +C_n \left( {U-U_\mathrm{obs} } \right) , \end{aligned}$$
(17)

where \(U\) is the horizontal wind component, \(K\) is the wind exchange coefficient, \(C_{n}\) is the nudging coefficient (inverse of relaxation time: \(1/\tau _{n})\), \(U_\mathrm{obs}\) is the driving wind field derived from observations.

1.1.2 Thermodynamic Equations

Prognostic equations for the liquid-water potential temperature, \(\theta _\mathrm{l}\), and for the total specific cloud water content \(q_\mathrm{w}\) are

$$\begin{aligned} \rho \frac{\partial \theta _\mathrm{l} }{\partial t}&= \frac{\partial }{\partial z}\left[ {\left( {\frac{\lambda _\mathrm{c} }{C_\mathrm{p} }+\frac{\mu _\mathrm{t} }{P_\mathrm{r}}} \right) \frac{\partial \theta _\mathrm{l} }{\partial z}} \right] -\frac{\theta }{TC_\mathrm{p} }\frac{\partial F_\mathrm{rad} }{\partial z}-\rho \frac{L_\mathrm{v} \theta }{TC_\mathrm{p} }\left( {\frac{\partial q_{_\mathrm{l} } }{\partial t}} \right) _\mathrm{SED} +\rho C_n (\theta _\mathrm{l} -\theta _{l_\mathrm{obs} } ),\nonumber \\ \end{aligned}$$
(18)
$$\begin{aligned} \rho \frac{\partial q_\mathrm{w} }{\partial t}&= \frac{\partial }{\partial z}\left[ {\left( {\frac{\lambda _\mathrm{c} }{C_\mathrm{p} }+\frac{\mu _\mathrm{t}}{P_\mathrm{r} }} \right) \frac{\partial q_\mathrm{w} }{\partial z}} \right] -\rho \left( {\frac{\partial q_{_\mathrm{l} } }{\partial t}} \right) _\mathrm{SED} +\rho C_n (q_\mathrm{w} -q_{w_\mathrm{obs} } ), \end{aligned}$$
(19)

where \(\rho \) is the air density, \(\lambda _\mathrm{c}\) is the thermal diffusivity, \(\mu _\mathrm{t}\) is the turbulent viscosity, \(P_\mathrm{r}\) is the turbulent Prandtl number, \(F_\mathrm{rad}\) is the vertical divergence of net radiative fluxes, and \(\theta _\mathrm{lobs},\; q_\mathrm{wobs}\) are derived from observations.

The equation for the cloud droplet number, \(N_\mathrm{d}\), is written as

$$\begin{aligned} \rho \frac{\partial N_\mathrm{d} }{\partial t}=\left[ {\left( {\frac{\lambda _\mathrm{t}}{C_\mathrm{p} }+\frac{\mu _\mathrm{t}}{P_\mathrm{r} }} \right) \frac{\partial N_\mathrm{d} }{\partial z}} \right] +\rho \left( {\frac{\partial N_\mathrm{d} }{\partial t}} \right) _\mathrm{C/E} +\rho \left( {\frac{\partial N_\mathrm{d} }{\partial t}} \right) _\mathrm{NUC} +\rho \left( {\frac{\partial N_\mathrm{d} }{\partial t}} \right) _\mathrm{SED},\nonumber \\ \end{aligned}$$
(20)

where the subscript SED refers to the rate of change due to sedimentation; C/E to condensation/evaporation; NUC to cloud droplet nucleation respectively. The sink/source terms on the right-hand side are parametrized in terms of the prognostic variables themselves \((q_\mathrm{l}\) and \(N_\mathrm{d})\).

1.1.3 Determination of the maximum supersaturation \(s_\mathrm{max}\)

$$\begin{aligned} s_{\max } =\sum _{i=1}^3 {\frac{1}{s_i^2 }} \left[ {f_i \left( {\frac{\varsigma }{\eta _i }} \right) ^{3/2}+g_i \left( {\frac{s_i^2 }{\eta _i +3\varsigma }} \right) ^{3/4}} \right] , \end{aligned}$$
(21a)

with

$$\begin{aligned} f_i =0.5\exp \left( {2.5\ln ^{2}\sigma _i } \right) ,\end{aligned}$$
(21b)
$$\begin{aligned} g_i =1+0.25\ln \sigma _i,\end{aligned}$$
(21c)
$$\begin{aligned} s_i =\frac{2}{\sqrt{B}}\left( {\frac{A}{3r_{\mathrm{a}_i } }} \right) ^{3/2}, \end{aligned}$$
(21d)

and

$$\begin{aligned} \varsigma =\frac{2A}{3}\left( {\frac{A_1 W+A_3 {\partial F_\mathrm{rad} }/{\partial z}}{A_4 }} \right) ^{1/2},\end{aligned}$$
(22a)
$$\begin{aligned} \eta _i =\frac{\left[ {{\left( {A_1 W+A_3 {\partial F_\mathrm{rad} }/{\partial z}} \right) }/{A_4 }} \right] ^{3/2}}{2\pi \rho _\mathrm{w} A_2 N_{\mathrm{a}_i } }, \end{aligned}$$
(22b)

where \(\rho _\mathrm{w}\) is the water density, \(A_{1},\; A_{2},\;A_{3}\) are the constants defined in Eq. 6, and \(A_{4},\; A,\; B\) can be found in Abdul-Razzak et al. (1998).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Musson-Genon, L., Dupont, E. et al. On the Influence of a Simple Microphysics Parametrization on Radiation Fog Modelling: A Case Study During ParisFog. Boundary-Layer Meteorol 151, 293–315 (2014). https://doi.org/10.1007/s10546-013-9894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9894-y

Keywords

Navigation