Skip to main content

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Although generally not discussed in the literature dedicated to fog, the presence of precipitation can have significant influences on the presence and evolution of fog. In this chapter, influences of precipitation are described, with a particular interest in its dual role in fog formation and dissipation. By the same token, the chapter also discusses a relatively overlooked phenomenon: fog formation in precipitation areas within mid-latitude cyclonic systems. A description of the multi-scale mechanisms and interactions influencing the presence of fog under this scenario is provided through the analysis of historical weather observations, theoretical concepts and results from detailed numerical modeling of rainfall evaporation. This updated description shows that precipitation-related fog formation and dissipation is determined by intricate multi-scale interactions, involving specific conditions over a wide range of scales. These include synoptic scale circulations leading to the formation of temperature inversions to the microstructure of precipitating hydrometeors. The latter determines the lagged temperature adjustment of the precipitating particles and hence their evaporation rates in near or saturated environments (influencing fog formation), as well as their size-dependent capacity to scavenge fog droplets (influencing fog dissipation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, S. J., & Boutle, I. A. (2012). An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quarterly Journal of the Royal Meteorological Society, 138, 2151–2162.

    Article  Google Scholar 

  • Bergot, T., & Guédalia, D. (1994). Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Monthly Weather Review, 122, 1218–1230.

    Article  Google Scholar 

  • Byers, H. R. (1959). General meteorology (3rd ed., p. 540). New York: McGraw Hill.

    Google Scholar 

  • Dolezel, E. J. (1944). Saturation and cooling of air layers by evaporation from falling rain. Journal of the Meteorology, 1, 89–97.

    Article  Google Scholar 

  • Donaldson, N. R., & Stewart, R. E. (1993). Fog induced by mixed-phase precipitation. Atmospheric Research, 29, 9–25.

    Article  Google Scholar 

  • Dupont, J.-C., Haeffelin, M., Protat, A., Bouniol, D., Boyouk, N., & Morille, Y. (2012). Stratus-fog formation and dissipation: A 6-day case study. Boundary-Layer Meteorology, 143, 207–225.

    Article  Google Scholar 

  • Ferrier, B. S. (1994). A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. Journal of the Atmospheric Science, 51, 249–280.

    Article  Google Scholar 

  • George, J. J. (1940). Fog: Its causes and forecasting with special reference to eastern and southern United States. Bulletin of the American Meteorological Society, 21, 135–148, 261–269, 285–291.

    Google Scholar 

  • Gerber, H. (1991). Supersaturation and droplet spectral evolution in fog. Journal of Atmospheric Science, 48, 2569–2588.

    Article  Google Scholar 

  • Goldman, L. (1951). On forecasting ceiling lowering during continuous rain. Monthly Weather Review, 79, 133–142.

    Article  Google Scholar 

  • Gultepe, I., & Milbrandt, J. A. (2010). Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. Journal of Applied Meteorology and Climatology, 49, 36–46.

    Article  Google Scholar 

  • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling field project. Bulletin of the American Meteorological Society, 90, 341–359. doi:10.1175/2008BAMS2354.1.

    Article  Google Scholar 

  • Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., et al. (2010). PARISFOG: Shedding new light on fog physical processes. Bulletin of the American Meteorological Society, 91, 767–783.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.

    Article  Google Scholar 

  • Kinzer, G. D., & R. Gunn, (1951) The evaporation, temperature and thermal relaxation time of freely falling waterdrops. J. Meteor., 8, 71–83.

    Google Scholar 

  • Korolev, A. V., & Isaac, G. A. (2000). Drop growth due to high supersaturation caused by isobaric mixing. Journal of Atmospheric Science, 57, 1675–1685.

    Google Scholar 

  • Liu, D. Y., Niu, S. J., Yang, J., Zhao, L. J., Liü, J. J., & Lu, C. S. (2012). Summary of a 4-year fog field study in northern Nanjing, part 1: Fog boundary layer. Pure and Applied Geophysics, 169, 809–819.

    Article  Google Scholar 

  • Marshall, J. S., & Palmer, N. (1948). The distribution of raindrops with size. Journal of Meteorology, 5, 165–166.

    Article  Google Scholar 

  • Niu, S. J., Liu, D. Y., Zhao, L. J., Lu, C. S., Liü, J. J., & Yang, J. (2012). Summary of a 4-year fog field study in northern Nanjing, part 2: Fog microphysics. Pure and Applied Geophysics, 169, 1137–1155.

    Article  Google Scholar 

  • Petterssen, S. (1969). Introduction to meteorology (3rd ed., p. 333). New York: McGraw-Hill.

    Google Scholar 

  • Pruppacher, H. R., & J. D. Klett, (1997) Microphysics of Clouds and Precipitation. 2nd ed. Kluwer, 954 pp.

    Google Scholar 

  • Rodhe, B. (1962). The effect of turbulence on fog formation. Tellus, 14, 49–86.

    Google Scholar 

  • Rogers, R. R., & Yau, M. K. (1989). A short course in cloud physics (3rd ed., p. 293). New York: Pergamon Press.

    Google Scholar 

  • Stewart, R. E. (1992). Precipitation types in the transition region of winter storms. Bulletin of the American Meteorological Society, 73, 287–296.

    Article  Google Scholar 

  • Stewart, R. E., & Yiu, D. T. (1993). Distributions of precipitation and associated parameters across precipitation type transitions over southern Ontario. Atmospheric Research, 29, 153–178.

    Article  Google Scholar 

  • Stewart, R. E., Yiu, D. T., Chung, K. K., Hudak, D. R., Lozowski, E. P., Oleskiw, M., et al. (1995). Weather conditions associated with the passage of precipitation type transition regions over eastern Newfoundland. Atmosphere-Ocean, 33, 25–53.

    Article  Google Scholar 

  • Tardif, R., (2007) Characterizing fog and the physical mechanisms leading to its formation during precipitation in a coastal area of the northeastern United States. Ph.D. dissertation, University of Colorado

    Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2007). Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology and Climatology, 46, 1141–1168.

    Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2008). Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York city region. Journal of Applied Meteorology and Climatology, 47, 1681–1703.

    Article  Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2010). Evaporation of nonequilibrium raindrops as a fog formation mechanism. Journal of Atmospheric Science, 67, 345–364.

    Article  Google Scholar 

  • Watts, R. G., & Farhi, I. (1975). Relaxation times for stationary evaporating liquid droplets. Journal of Atmospheric Science, 32, 1864–1867.

    Article  Google Scholar 

  • Willett, H. C. (1928). Fog and haze, their causes, distribution, and forecasting. Monthly Weather Review, 56, 435–468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tardif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tardif, R. (2017). Precipitation and Fog. In: Koračin, D., Dorman, C. (eds) Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45229-6_8

Download citation

Publish with us

Policies and ethics