Skip to main content
Log in

Vertical and Horizontal Transport of Energy and Matter by Coherent Motions in a Tall Spruce Canopy

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiro B (1990) Comparison of turbulence statistics within three boreal forest canopies. Boundary-Layer Meteorol 51: 99–121. doi:10.1007/BF00120463

    Article  Google Scholar 

  • Antonia RA (1981) Conditional sampling in turbulence measurements. Annu Rev Fluid Mech 13: 131–156. doi:10.1146/annurev.fl.13.010181.001023

    Article  Google Scholar 

  • Antonia RA, Browne LWB, Bisset DK, Fulachier L (1987) A description of the organized motion in the turbulent far wake of a cylinder at low Reynolds numbers. J Fluid Mech 184: 423–444

    Article  Google Scholar 

  • Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol 108: 397–417. doi:10.1023/A:1024168428135

    Article  Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Gorsel EV (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150: 655–664. doi:10.1016/j.agrformet.2010.01.016

    Article  Google Scholar 

  • Baldocchi D (1992) A Lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy. Boundary-Layer Meteorol 61: 113–144. doi:10.1007/BF02033998

    Article  Google Scholar 

  • Baldocchi D, Meyers T (1988) A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorol 45: 31–58. doi:10.1007/BF00120814

    Article  Google Scholar 

  • Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125: 1–24. doi:10.1007/s10546-007-9190-9

    Article  Google Scholar 

  • Bergström H, Högström U (1989) Turbulent exchange above a pine forest. II. Organized structures. Boundary-Layer Meteorol 49: 231–263. doi:10.1007/BF00120972

    Article  Google Scholar 

  • Bogard DG, Tiederman WG (1986) Burst detection with single-point velocity measurements. J Fluid Mech 162: 389–413. doi:10.1017/S0022112086002094

    Article  Google Scholar 

  • Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Boundary-Layer Meteorol 112: 129–157. doi:10.1023/B:BOUN.0000020160.28184.a0

    Article  Google Scholar 

  • Chen J, Hu F (2003) Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China. Boundary-Layer Meteorol 107: 429–444. doi:10.1023/A:1022162030155

    Article  Google Scholar 

  • Collineau S, Brunet Y (1993a) Detection of turbulent coherent motions in a forest canopy. Part I: Wavelet analysis. Boundary-Layer Meteorol 65: 357–379. doi:10.1007/BF00707033

    Google Scholar 

  • Collineau S, Brunet Y (1993b) Detection of turbulent coherent motions in a forest canopy. Part II: Time-scales and conditional averages. Boundary-Layer Meteorol 66: 49–73. doi:10.1007/BF00705459

    Article  Google Scholar 

  • Denmead OT, McIlroy IC (1970) Measurements of non-potential evaporation from wheat. Agric Meteorol 7: 285–302

    Article  Google Scholar 

  • Denmead OT, Simpson JR, Freney JR (1977) A direct field measurement of Ammonia emissions after injection of anhydrous ammonia. Soil Sci Soc Am J 41: 1001–1004

    Article  Google Scholar 

  • Desjardins RL (1972) CO2 measurements by eddy correlation methods. Bull Am Meteorol Soc 53: 1040

    Google Scholar 

  • Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81: 219–230. doi:10.1007/s00704-004-0111-2

    Article  Google Scholar 

  • Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2-budget in and above a forest canopy. Boundary-Layer Meteorol 113: 201–224. doi:10.1023/B:BOUN.0000039372.86053.ff

    Article  Google Scholar 

  • Finnigan JJ (1979) Turbulence in waving wheat. II. Structure of momentum transfer. Boundary-Layer Meteorol 16: 213–236. doi:10.1007/BF02350512

    Article  Google Scholar 

  • Finnigan J (1999) A comment on the paper by Lee (1998): on micrometeorological observations of surfaceair surface exchange over tall vegetation. Agric For Meteorol 97: 55–67. doi:10.1016/S0168-1923(99)00049-0

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • Gao W, Li BL (1993) Wavelet analysis of coherent structures at the atmosphere–forest interface. J Appl Meteorol 32: 1717–1725

    Article  Google Scholar 

  • Gao W, Shaw RH, Pawu KT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol 47: 349–377. doi:10.1007/BF00122339

    Article  Google Scholar 

  • Garratt J (1978) Flux profile relations above tall vegetation. Q J Roy Meteorol Soc 104: 199–211. doi:10.1002/qj.49710443915

    Article  Google Scholar 

  • Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz chatchments in NE Bavaria, Germany. In: Matzner E (eds) Biogeochemistry of forested catchments in a changing environment: ecological Studies, vol 172. Springer, Heidelberg, pp 15–41

    Google Scholar 

  • Horst TW (2000) On frequency response corrections for eddy covariance flux measurements. Boundary-Layer Meteorol 94: 517–520. doi:10.1023/A:1002427517744

    Article  Google Scholar 

  • Howell JF, Mahrt L (1994) An adaptive decomposition: application to turbulence. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics, wavelet analysis and its applications, vol 4. Academic Press, San Diego, pp 107–128

    Google Scholar 

  • Katul G, Kuhn G, Schieldge J, Hsieh CI (1997) The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83: 1–26. doi:10.1023/A:1000293516830

    Article  Google Scholar 

  • Kline SJ, Reynolds WC, Schraub FA, Rundstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30: 741–773. doi:10.1017/S0022112067001740

    Article  Google Scholar 

  • Krusche N, de Oliveira AP (2004) Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110: 191–211. doi:10.1023/A:1026096805679

    Article  Google Scholar 

  • Lee X (1998) On micrometeorological observations of surfaceair surface exchange over tall vegetation. Agric For Meteorol 91: 39–49. doi:10.1016/S0168-1923(98)00071-9

    Article  Google Scholar 

  • Liu H, Foken T (2001) A modified Bowen ratio method to determine sensible and latent heat fluxes. Meteorol Z 10: 71–80. doi:10.1127/0941-2948/2001/0010-0071

    Article  Google Scholar 

  • Lu CH, Fitzjarrald DR (1994) Seasonal and diurnal variations of coherent structures over a deciduous forest. Boundary-Layer Meteorol 69: 43–69. doi:10.1007/BF00713294

    Article  Google Scholar 

  • Lu SS, Willmarth WW (1973) Measurements of the structure of Reynolds stress in a turbulent boundary layer. J Fluid Mech 60: 481–512. doi:10.1017/S0022112073000315

    Article  Google Scholar 

  • Lykossov VN, Wamser C (1995) Turbulence intermittency in the atmospheric surface layer over snow-covered sites. Boundary-Layer Meteorol 72: 393–409. doi:10.1007/BF00709001

    Article  Google Scholar 

  • Maitani T, Ohtaki E (1987) Turbulent transport processes of momentum and sensible heat in the surface layer over a paddy field. Boundary-Layer Meteorol 40: 283–293. doi:10.1007/BF00117452

    Article  Google Scholar 

  • Maitani T, Shaw RH (1990) Joint probability analysis of momentum and heat fluxes at a deciduous forest. Boundary-Layer Meteorol 52: 283–300. doi:10.1007/BF00122091

    Article  Google Scholar 

  • Mallat S, Zhong S (1992) Wavelet transform maxima and multiscale edges. In: Ruskai MB, Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer Y, Raphael L (eds) Wavelets and their applications. Jones and Bartlett, Boston, pp 67–104

    Google Scholar 

  • Marcolla B, Cescatti A, Montagnani L, Manca G, Kerschbaumer G, Minerbi S (2005) Importance of advection in the atmospheric CO2 exchanges of an alpine fores. Agric For Meteorol 130: 193–206. doi:10.1016/j.agrformet.2005.03.006

    Article  Google Scholar 

  • Mauder M, Oncley SP, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, Bruin HARD, Liu H (2007) The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Boundary-Layer Meteorol 123: 29–54. doi:10.1007/s10546-006-9139-4

    Article  Google Scholar 

  • Meyers T, Baldocchi D (1991) The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric For Meteorol 53: 207–222. doi:10.1016/0168-1923(91)90058-X

    Article  Google Scholar 

  • Meyers T, Paw U KT (1986) Testing of a higher-order closure model for modeling airflow within and above plant canopies. Boundary-Layer Meteorol 37: 297–311. doi:10.1007/BF00122991

    Article  Google Scholar 

  • Meyers TP, Paw U KT (1987) Modelling the plant canopy micrometeorology with higher-order closure principles. Agric For Meteorol 41: 143–163

    Article  Google Scholar 

  • Moderow U, Feigenwinter C, Bernhofer C (2007) Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain. Boundary-Layer Meteorol 123: 99–120. doi:10.1007/s10546-006-9136-7

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37: 17–35. doi:10.1007/BF00122754

    Article  Google Scholar 

  • Pasquill F (1950) Some further considerations of the measurements and indirect evaluation of natural evaporation. Q J Roy Meteorol Soc 76: 287–301

    Article  Google Scholar 

  • Raupach MR (1979) Anomalies in flux–gradient relationships over a forest. Boundary-Layer Meteorol 16: 467–486. doi:10.1007/BF03163564

    Article  Google Scholar 

  • Raupach MR (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108: 363–382. doi:10.1017/S0022112081002164

    Article  Google Scholar 

  • Raupach MR (1987) A Lagrangian analysis of scalar transfer in vegetation canopies. Q J Roy Meteorol Soc 113: 107–120. doi:10.1002/qj.49711347507

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22: 79–90. doi:10.1007/BF00128057

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1989) Coherent eddies in vegetation canopies. In: 4th Australasian conference on heat and mass transfer, Christchurch, NZ, pp 75–90

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382. doi:10.1007/BF00120941

    Article  Google Scholar 

  • Shaw RH, Schumann U (1992) Large eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61: 47–64. doi:10.1007/BF02033994

    Article  Google Scholar 

  • Shaw RH, Zhang XJ (1992) Evidence of pressure-forced turbulent flow in a forest. Boundary-Layer Meteorol 58: 273–288. doi:10.1007/BF02033828

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Clim Appl Meteorol 22: 1922–1931. doi:10.1175/1520-0450(1983)022<1922:SOTRSI>2.0.CO;2

    Article  Google Scholar 

  • Shaw RH, Paw U KT, Zhang XJ, Gao W, Hartog G, Neumann HH (1990) Retrieval of turbulent pressure fluctuations at the ground surface beneath a forest. Boundary-Layer Meteorol 50: 319–338. doi:10.1007/BF00120528

    Article  Google Scholar 

  • Shen SH, Leclerc MY (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87: 3–25. doi:10.1016/S0168-1923(97)00008-7

    Article  Google Scholar 

  • Sörgel M, Trebs I, Serafimovich A, Moravek A, Held A, Zetzsch C (2010) Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmos Chem Phys Discuss 10: 21,109–21,145. doi:10.5194/acpd-10-21109-2010

    Article  Google Scholar 

  • Staebler R, Fitzjarrald D (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122: 139–156. doi:10.1016/j.agrformet.2003.09.011

    Article  Google Scholar 

  • Staudt K, Foken T (2007) Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site. Work Report, University of Bayreuth, Department of Micrometeorology, Print, ISSN 1614-8916, 35:37 pp

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publisher, Dordrecht, 670 pp

    Google Scholar 

  • Sutton OG (1953) Micrometeorology. McGraw-Hill, New York, 333 pp

    Google Scholar 

  • Swinbank W (1951) Measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol 8: 135–145

    Article  Google Scholar 

  • Talmon AM, Ooms JMJGKG (1986) Simultaneous flow visualization and Reynolds-stress measurement in a turbulent boundary layer. J Fluid Mech 163: 459–478. doi:10.1017/S0022112086002380

    Article  Google Scholar 

  • Tanner CB (1960) Energy balance approach to evapotranspiration from crops. Soil Sci Soc Am Proc 24: 1–9

    Article  Google Scholar 

  • Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In: Allen RG (eds) Management of irrigation and drainage systems: integrated perspectives. American Society of Civil Engineers, New York, pp 945–952

    Google Scholar 

  • Thomas AS, Bull MK (1983) On the role of the wall-pressure fluctuations in deterministic motions in the turbulent boundary layer. J Fluid Mech 128: 283–322. doi:10.1017/S002211208300049X

    Article  Google Scholar 

  • Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80: 91–104. doi:10.1007/s00704-004-0093-0

    Article  Google Scholar 

  • Thomas C, Foken T (2007a) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123: 317–337. doi:10.1007/s10546-006-9144-7

    Article  Google Scholar 

  • Thomas C, Foken T (2007b) Organised motion in a tall spruce canopy: temporal scales, structurespacing and terrain effects. Boundary-Layer Meteorol 122: 123–147. doi:10.1007/s10546-006-9087-z

    Article  Google Scholar 

  • Thorthwaite CW, Holzman B (1942) Measurement of evaporation from land and water surface. USDA Tech Bull 817: 1–75

    Google Scholar 

  • van Dijk A, Kohsiek W, de Bruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers. J Atmos Ocean Technol 20: 143–151. doi:10.1175/1520-0426(2003)020<0143:OSOKALT>2.0.CO;2

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14: 512–526. doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2

    Article  Google Scholar 

  • Wallace JM, Eckelmann H, Brodkey RS (1972) The wall region in turbulent shear flow. J Fluid Mech 54: 39–48. doi:10.1017/S0022112072000515

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106: 85–100. doi:10.1002/qj.49710644707

    Article  Google Scholar 

  • Wilczak JM (1984) Large-scale eddies in the unstably stratified atmospheric boundary surface layer. Part I: Velcoity and temperature structure. J Atmos Sci 41: 3537–3550. doi:10.1175/1520-0469(1984)041<3537:LSEITU>2.0.CO;2

    Article  Google Scholar 

  • Wilczak JM, Businger JA (1984) Large-scale eddies in the unstably stratified atmospheric boundary surface layer. Part II: Turbulent pressure fluctuations and the budgets of heat fkux, stress and turbulent kinetic energy. J Atmos Sci 41: 3551–3567

    Article  Google Scholar 

  • Wilczak JM, Tillman JE (1980) The three-dimensional structure of convection in the atmospheric surface layer. J Atmos Sci 37: 2424–2443. doi:10.1175/1520-0469(1980)037<2424:TTDSOC>2.0.CO;2

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99: 127–150. doi:10.1023/A:1018966204465

    Article  Google Scholar 

  • Wyngaard J, Cote O, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28: 1171–1182. doi:10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2

    Article  Google Scholar 

  • Yi C, Davis K, Bakwin P, Berger B, Marr L (2000) Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J Geophys Res 105: 9991–9999. doi:10.1029/2000JD900080

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Serafimovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serafimovich, A., Thomas, C. & Foken, T. Vertical and Horizontal Transport of Energy and Matter by Coherent Motions in a Tall Spruce Canopy. Boundary-Layer Meteorol 140, 429–451 (2011). https://doi.org/10.1007/s10546-011-9619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9619-z

Keywords

Navigation