Skip to main content
Log in

A Perspective on Thirty Years of the Webb, Pearman and Leuning Density Corrections

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The density correction theory of Webb et al. (1980, Q J Roy Meteorol Soc 106: 85–100, hereafter WPL) is a principle underpinning the experimental investigation of surface fluxes of energy and masses in the atmospheric boundary layer. It has a long-lasting influence in boundary-layer meteorology and micrometeorology, and the year 2010 marks the 30th anniversary of the publication of the WPL theory. We provide here a critique of the theory and review the research it has spurred over the last 30 years. In the authors’ opinion, the assumption of zero air source at the surface is a fundamental novelty that gives the WPL theory its enduring vitality. Considerations of mass conservation show that, in a non-steady state, the WPL mean vertical velocity and the thermal expansion velocity are two distinctly different quantities of the flow. Furthermore, the integrated flux will suffer a systematic bias if the expansion velocity is omitted or if the storage term is computed from time changes in the CO2 density. A discussion is provided on recent efforts to address several important practical issues omitted by the original theory, including pressure correction, unintentional alternation of the sampled air, and error propagation. These refinement efforts are motivated by the need for an unbiased assessment of the annual carbon budget in terrestrial ecosystems in the global eddy flux network (FluxNet).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T :

Temperature

p :

Atmospheric pressure

S :

Source term

W :

Total mean vertical velocity

z :

Measurement height

χ :

Molar mixing ratio

μ :

Ratio of molecular mass relative to dry air

ω :

Mass mixing ratio

ρ :

Mass density

ϱ :

Molar density

a :

Moist air

c :

CO2

d :

Dry air or density term

o :

Oxygen

v :

Water vapour

References

  • Aranibar JN, Berry JA, Riley WJ, Pataki DE, Law BE, Ehleringer JR (2006) Combining meteorology, eddy fluxes, isotope measurements, and modeling to understand environmental controls of carbon isotope discrimination at the canopy scale. Glob Chang Biol 12: 710–730

    Article  Google Scholar 

  • Bakan S (1978) Note on the eddy correlation method for CO2 flux measurements. Boundary-Layer Meteorol 14: 597–600

    Article  Google Scholar 

  • Baldocchi DD (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56: 1–26

    Article  Google Scholar 

  • Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere–atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69: 1331–1340

    Article  Google Scholar 

  • Black TA, McNaughton KG (1971) Psychrometric apparatus for Bowen-ratio determination over forests. Boundary-Layer Meteorol 2: 246–254

    Article  Google Scholar 

  • Bolin B, Keeling CD (1963) Large-scale atmospheric mixing as deduced from seasonal and meridional variations of carbon dioxide. J Geophys Res 68: 3899–3920

    Google Scholar 

  • Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys Review 27: 779–787

    Article  Google Scholar 

  • Brook RR (1978) The influence of water vapour fluctuations on turbulent fluxes. Boundary-Layer Meteorol 15: 481–487

    Article  Google Scholar 

  • Burba GG, McDermitt DK, Grelle A, Anderson DJ, Xu L (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analysers. Glob Chang Biol 14: 1854–1876

    Article  Google Scholar 

  • Chapin FS, Mooney HA, Capin MC (2004) Principles of terrestrial ecosystem ecology. Springer, New York, p 436

    Google Scholar 

  • Chen B, Chen JM, Liu J, Chan D, Higuchi K, Shashkov A (2004) A vertical diffusion scheme to estimate the atmospheric rectifier effect. J Geophys Res 109: D04306. doi:10.1029/2003JD003925

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133: 1702

    Article  Google Scholar 

  • Dabberdt WF, Lenschow DH, Horst TW, Zimmerman PR, Oncley SP, Delany AC (1993) Atmosphere–surface exchange measurements. Science 260: 1472–1481

    Article  Google Scholar 

  • Day RA (2006) How to write and publish a scientific paper, 6th edn. Greenwood Press, Westport, p 320

    Google Scholar 

  • Deardorff JW (1974) Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7: 81–106

    Google Scholar 

  • Denmead OT, Bradley EF (1985) Flux–gradient relationships in a forest canopy. In: Hutchinson BA, Hicks BB (Eds) The Forest–Atmosphere Interactions. Reidel, pp 421–442

  • Desjardins RL (1972) A study of carbon dioxide and sensible heat fluxes using the eddy correlation technique. PhD Dissertation, Cornell University

  • Dyer AJ (1967) The turbulent transport of heat and water vapour in an unstable atmosphere. Q J Roy Meteorol Soc 93: 501–508

    Article  Google Scholar 

  • Dyer AJ, Maher FJ (1965) Automatic eddy-flux measurement with the evapotron. J Appl Meteorol 4: 622–625

    Article  Google Scholar 

  • Dyer AJ, Pruitt WO (1962) Eddy-flux measurements over a small, irrigated area. J Appl Meteorol 1: 471–473

    Article  Google Scholar 

  • Finnigan JJ (2004) A re-evaluation of long-term flux measurement techniques, part II: coordinate systems. Boundary-Layer Meteorol 113: 1–41

    Article  Google Scholar 

  • Finnigan JJ (2009) Response to comment by Dr AS Kowalski on “The storage term in eddy flux calculations”. Agric For Meteorol 149: 725–729

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18: 1351–1367

    Article  Google Scholar 

  • Friedland AJ, Folt CL (2009) Writing successful science proposals, 2nd edn. Yale University Press, New Haven, p 224

    Google Scholar 

  • Fuehrer PL, Friehe CA (2002) Flux corrections revisited. Boundary-Layer Meteorol 102: 415–457

    Article  Google Scholar 

  • Fung I, Prentice K, Matthews E, Lerner J, Russell G (1983) 3-Dimensional tracer model study of atmospheric CO2—response to seasonal exchanges with the terrestrial biosphere. J Geophys Res 88: 1281–1294

    Article  Google Scholar 

  • Górska M, de Arellano JVG, LeMone MA, van Heerwaarden CC (2008) Mean and flux horizontal variability of virtual potential temperature, moisture, and carbon dioxide: aircraft observations and LES study. Mon Weather Rev 161: 4435–4451

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2: 169–192

    Article  Google Scholar 

  • Goulden ML, Winston GC, McNillan AMS, Litvak ME, Read EL, Rocha AV, Elliot JR (2006) An eddy covariance mesonet to measure the effect of forest age on land–atmosphere exchange. Glob Chang Biol 12: 2146–2162

    Article  Google Scholar 

  • Gramann U (1995) Determination of the signal attenuation by the tubing of an infrared gas analysis system used to make eddy-correlation flux measurements. Master Thesis, University of British Columbia, Canada, 125 pp

  • Grelle A, Burba G (2007) Fine-wire thermometer to correct CO2 fluxes by open-path analysers for artificial density fluctuations. Agric For Meteorol 147: 48–57

    Article  Google Scholar 

  • Griessbaum F, Schmidt A (2009) Advanced tilt correction from flow distortion effects on turbulent CO2 fluxes in complex environments using large eddy simulation. Q J Roy Meteorol Soc 135: 1603–1613

    Article  Google Scholar 

  • Griffis TJ, Sargent SD, Baker JM, Lee X, Tanner BD, Greene J, Swiatek E, Billmark K (2008) Direct measurement of biosphere–atmosphere isotopic CO2 exchange using the eddy covariance technique. J Geophys Res 113: D08304. doi:10.1029/2007/JD009297

    Article  Google Scholar 

  • Griffis TJ, Sargent SD, Lee X, Baker JM, Greene J, Erickson M, Zhang X, Billmark K, Schultz N, Xiao W, Hu N (2010) Determining the oxygen isotope composition of evapotranspiration using eddy covariance. Boundary-Layer Meteorol 137: 307–326

    Article  Google Scholar 

  • Huang J, Lee X, Patton EG (2008) A modeling study of flux imbalance and the influence of entrainment in the convective boundary layer. Boundary-Layer Meteorol 127: 273–292

    Article  Google Scholar 

  • Ibrom A, Dellwik E, Larsen SE, Pilegaard K (2007a) On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements. Tellus 59B: 937–946

    Google Scholar 

  • Ibrom A, Dellwik E, Flyvbjerg H, Jensen NO, Pilegaard K (2007b) Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric For Meteorol 147: 140–156

    Article  Google Scholar 

  • Jones EP, Smith SD (1977) A first measurement of sea–air CO2 flux by eddy correlation. J Geophys Res 82: 5990–5992

    Article  Google Scholar 

  • Jones EP, Smith SD (1978) The air density correction to eddy flux measurements. Boundary-Layer Meteorol 15: 357–360

    Article  Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110: 381–404

    Article  Google Scholar 

  • Kowalski AS (2008) Comment on “The storage term in eddy flux calculations”. Agric For Meteorol 148: 691–692

    Article  Google Scholar 

  • Kowalski AS, Serrano-Ortiz P (2007) On the relationship between the eddy covariance, the turbulent flux, and surface exchange for a trace gas such as CO2. Boundary-Layer Meteorol 124: 129–141

    Article  Google Scholar 

  • Kuhn T (1962) The structure of scientific revolution. University of Chicago Press, Chicago, p 212

    Google Scholar 

  • Lee X (1998) On micrometeorological observations of surface–air exchange over tall vegetation. Agric For Meteorol 91: 39–49

    Article  Google Scholar 

  • Lee X (2000) Water vapour density effect on measurements of trace gas mixing ratio and flux with a massflow controller. J Geophys Res 105: 17807–17810

    Article  Google Scholar 

  • Lee X, Hu X (2002) Forest–air fluxes of carbon and energy over non-flat terrain. Boundary-Layer Meteorol 103: 277–301

    Article  Google Scholar 

  • Lee X, Black TA, den Hartog G, Neumann HH, Nesic Z, Olejnki J (1996) Carbon dioxide exchange and nocturnal processes over a mixed deciduous forest. Agric For Meteorol 81: 13–29

    Article  Google Scholar 

  • Lee X, Finnigan J, Paw U KT (2004a) Coordinate systems and flux bias error. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 33–66

    Google Scholar 

  • Lee X, Yu Q, Sun X, Liu J, Min Q, Liu Y, Zhang X (2004b) Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agric For Meteorol 122: 111–124

    Article  Google Scholar 

  • Lee X, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR (2009) Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapour isotopes. Glob Biogeochem Cycles 23: GB1002. doi:10.1029/2008GB003331

    Article  Google Scholar 

  • Lenschow DH, Raupach MR (1991) The attenuation of fluctuations in scalar concentrations through sampling tubes. J Geophys Res 96D: 15259–15268

    Article  Google Scholar 

  • Leuning R (2004) Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 133–160

    Google Scholar 

  • Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorol 123: 263–267

    Article  Google Scholar 

  • Leuning R, Judd MJ (1996) The relative merits of open- and closed-path analysers for measurement of eddy fluxes. Glob Chang Biol 2: 241–253

    Article  Google Scholar 

  • Leuning R, King K (1992) Comparison of eddy-covariance measurements of CO2 fluxes by open-path and closed-path CO2 analyzers. Boundary-Layer Meteorol 59: 297–311

    Article  Google Scholar 

  • Leuning R, Legg BJ (1982) Comments on ‘The influence of water vapour fluctuations on turbulent fluxes’ by Brook. Boundary-Layer Meteorol 23: 255–258

    Article  Google Scholar 

  • Leuning R, Moncrieff J (1990) Eddy-covariance CO2 flux measurements using open-path and closed-path CO2 analyzers—corrections for analyzer water-vapor sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorol 53: 63–76

    Article  Google Scholar 

  • Leuning R, Denmead OT, Lang ARG, Ohtaki E (1982) Effects of heat and water vapour transport on eddy covariance measurement of CO2 fluxes. Boundary-Layer Meteorol 23: 209–222

    Article  Google Scholar 

  • Licor Inc (1997) Soil CO2 flux chamber 6400-09 Instruction manual. Lincoln, Nebraska

  • Liu H (2005) An alternative approach for CO2 flux correction caused by heat and water vapour transfer. Boundary-Layer Meteorol 115: 151–168

    Article  Google Scholar 

  • Liu H, Randerson JT, Lindfors J, Massman WJ, Foken T (2006) Consequence of incomplete surface energy balance closure for CO2 fluxes from open-path CO2/H2O infrared gas analysers. Boundary-Layer Meteorol 120: 65–85

    Article  Google Scholar 

  • Mahrt L. (2010) Computing turbulent fluxes near the surface: needed improvements. Agric For Meteorol 150: 501–509

    Article  Google Scholar 

  • Marandino CA, De Bruyn WJ, Miller SD, Saltzman ES (2007) Eddy correlation measurements of the air/sea flux of dimethylsulfide over the North Pacific c Ocean. J Geophys Res 112: D0331. doi:10.1029/2006JD007293

    Article  Google Scholar 

  • Massman WJ (1991) The attenuation of concentration fluctuations in turbulent-flow through a tube. J Geophys Res 96D: 15269–15273

    Article  Google Scholar 

  • Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104: 185–198

    Article  Google Scholar 

  • Massman W (2004) Concerning the measurement of atmospheric trace gas fluxes with open- and closed-path eddy covariance system: the WPL terms and spectral attenuation. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 133–160

    Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113: 121–144

    Article  Google Scholar 

  • Massman WJ, Tuovinen JP (2006) An analysis and implications of alternative methods of deriving density (WPL) terms for eddy covariance flux measurements. Boundary-Layer Meteorol 121: 221–227

    Article  Google Scholar 

  • McNaughton KG, Laubach J (1998) Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base an advective inversion. Boundary-Layer Meteorol 88: 479–504

    Article  Google Scholar 

  • Miller S, Marandino S, Saltzman ES (2010) Ship-based measurement of air–sea CO2 exchange by eddy covariance. J Geophys Res 115: D02304

    Article  Google Scholar 

  • Moore CJ (1986) Frequency-response corrections for eddy-correlation systems. Boundary-Layer Meteorol 37: 17–35

    Article  Google Scholar 

  • Ono K, Miyata A, Yamada T (2008) Apparent downward CO2 flux observed with open-path eddy covariance over a non-vegetated surface. Theor Appl Climatol 92: 195–208

    Article  Google Scholar 

  • Pape L, Ammann C, Nyfeler-Brunner A, Spirig C, Hens K, Meixner FX (2009) An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences 6: 405–429

    Article  Google Scholar 

  • Pattey E, Desjardins RL, Boudreau F, Rochette P (1992) Impact of density fluctuations on the flux measurements of trace gases: implications for the relaxed eddy accumulation technique. Boundary-Layer Meteorol 59: 195–203

    Article  Google Scholar 

  • Paw U KT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorol 97: 481–511

    Article  Google Scholar 

  • Pielke RA (2001) Mesoscale meteorological modeling, 2nd edn. Academic Press, San Diego, p 612

    Google Scholar 

  • Price DT, Black TA (1990) Effects of short-term variation in weather on diurnal canopy CO2 flux and evapotranspiration of a juvenile Douglas-fir stand. Agric For Meteorol 50: 139–158

    Article  Google Scholar 

  • Priestley CHB, Swinbank WC (1947) Vertical transport of heat by turbulence in the atmosphere. Proc Roy Soc Lond 189: 543–561

    Article  Google Scholar 

  • Rannik Ü, Vesala T, Keskinen R (1997) On the damping of temperature fluctuations in a circular tube relevant to the eddy covariance measurement technique. J Geophys Res 102: 12789–12794

    Article  Google Scholar 

  • Sahlée E, Drennan WM (2009) Measurements of damping of temperature fluctuations in a tube. Boundary-Layer Meteorol 132: 339–348

    Article  Google Scholar 

  • Schlesinger WH (2004) Biogeochemistry: an analysis of global change. Academic Press, New York, p 588

    Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biospheric model (SiB) for use within general circulation models. J Atmos Sci 43: 505–531

    Article  Google Scholar 

  • Serrano-Oriz P, Kowalski AS, Domingo F, Ruiz B, Alados-Arboledas L (2007) Consequences of uncertainties in CO2 density for estimating net ecosystem CO2 exchange by open-path eddy covariance. Boundary-Layer Meteorol 126: 209–218

    Article  Google Scholar 

  • Simpson IJ, Thurtell GW, Kidd GE, Demetriadesshah TH, Flitcroft ID, Kanemasu ET, Nie D, Bronson KF, Neue HU (1995) Tunable-diode-laser measurements of methane fluxes from an irrigated rice paddy field in the Philippines. J Geophys Res 110D: 7283–7290

    Article  Google Scholar 

  • Smith SD, Jones EP (1979) Dry-air boundary conditions for correction of eddy flux measurements. Boundary-Layer Meteorol 17: 375–379

    Article  Google Scholar 

  • Swinbank WC (1951) The measurement of vertical transfer of heat and water vapour by eddies in the lower atmosphere. J Meteorol 8: 135–145

    Article  Google Scholar 

  • Tanner CB (1960) Energy balance approach to evapotranspiration from crops. Soil Sci Soc Proc 24: 1–9

    Article  Google Scholar 

  • Verma SB, Rosenberg NJ, Blad BL (1978) Turbulent exchange coefficients for sensible heat and water vapour under advective conditions. J Appl Meteorol 17: 330–338

    Article  Google Scholar 

  • Wagner-Riddle C, Furon A, Mclaughlin NL, Lee I, Barbeau J, Jayasundara S, Parkin G, Von Bertoldi P, Warland J (2007) Intensive measurement of nitrous oxide emissions from a corn-soybean-wheat rotation under two contrasting management systems over 5 years. Glob Chang Biol 13: 1722–1736

    Article  Google Scholar 

  • Webb EK (1982) On the correction of flux measurements for effects of heat and water vapour transfer. Boundary-Layer Meteorol 23: 251–254

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106: 85–100

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113: 223–243

    Article  Google Scholar 

  • Xiao W, Lee X, Griffis TJ, Kim K, Welp LR, Yu Q (2010) A modeling investigation of canopy-air oxygen isotopic exchange of water vapour and carbon dioxide in a soybean field. J Geophy Res Biogeosci 115: G01004. doi:10.1029/2009JG001163

    Article  Google Scholar 

  • Zhang J, Lee X, Song G, Han S (2011) Pressure correction to the long-term measurement of carbon dioxide flux. Agric For Meteorol 151: 70–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhui Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, X., Massman, W.J. A Perspective on Thirty Years of the Webb, Pearman and Leuning Density Corrections. Boundary-Layer Meteorol 139, 37–59 (2011). https://doi.org/10.1007/s10546-010-9575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9575-z

Keywords

Navigation