Skip to main content
Log in

Large-Eddy Simulations of the Stable Boundary Layer Using the Standard Kolmogorov Theory: Range of Applicability

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large-eddy simulations (LES) of the Stable Atmospheric Boundary Layer (SBL) are difficult because the turbulence is not isotropic for strong stratification and the Kolmogorov theory might be no longer valid. This fact compells us to work on modifications to the subgrid turbulence schemes, although there is not any widely accepted theory on anisotropic turbulence. In this work, a LES model is used to see what range of stable stratification can still be simulated with a subgrid turbulence scheme using the Kolmogorov theory for the dissipation. Twenty simulations of increasing stability have been performed using a horizontal resolution of 5 m. The model is able to simulate weakly and moderately stable conditions and experiences runaway cooling for strong stability. The goodness of the successful simulations is inspected through comparison to observations from the experimental campaigns SABLES-98 and CASES-99. Other supplementary tests have been performed on the resolution and the surface boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. A. Adams S. Stolz (2002) ArticleTitle‘A Subgrid-Scale Deconvolution Aprroach for Shock Capturing’ J. Comput. Phys. 178 391–426

    Google Scholar 

  • A. Andrén (1995) ArticleTitle‘The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study’ Quart. J. Roy. Meteorol. Soc. 121 961–985

    Google Scholar 

  • A. Andrén A.R. Brown J. Graf P. J. Mason C. -H. Moeng F. T. M. Nieuwstadt U. Schumann (1994) ArticleTitle‘Large-Eddy Simulation of a Neutrally Stratified Boundary Layer: A Comparison of Four Computed Codes’ Quart. J. Roy. Meteorol. Soc. 120 1457–1484

    Google Scholar 

  • A.R. Brown R. T. Cederwall A. Chlond P. G. Duynkerke J. C. Golaz M. Khairoutdinov D. C. Lewellen A. P. Lock M. K. Macvean C. -H. Moeng R. A. J. Neggers A. P. Siebesma P. Stevens (2002) ArticleTitle‘Large-Eddy Simulation of the Diurnal Cycle of Shallow Cumulus Convection Over Land’ Quart. J. Roy. Meteorol. Soc. 128 1075–1094

    Google Scholar 

  • V. M. Canuto (2002) ArticleTitle‘Critical Richardson Number and Gravity Waves’ Astron. Astrophysics. 384 1119–1123

    Google Scholar 

  • Cederwall, R. T.: 2002, Large-Eddy Simulation of the Evolving Stable Boundary Layer over Flat Terrain, Ph. D. Dissertation, Stanford University, CA, p. 231.

  • J. Cuxart P. Bougeault J. L. Redelsperger (2000a) ArticleTitle‘A Turbulence Scheme Allowing for Mesoscale and Large-Eddy Simulations’ Quart. J. Roy. Meteorol. Soc. 126 1–30

    Google Scholar 

  • J. Cuxart C. Yagüe G. Morales E. Terradellas J. Orbe J. Calvo A. Fernández M.R. Soler C. Infante P. Buenestado A. Espinalt H. E. Joergensen J. M. Rees J. Vilá J. M. Redondo I. R. Cantalapiedra L. Conangla (2000b) ArticleTitle‘Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES-98): A Report’ Boundary-Layer Meteorol 96 337–370

    Google Scholar 

  • Deardorff, J. W.: 1973, \lq Three-Dimensional Numerical Modeling of the Planetary Boundary Layer’, in Workshop on Micrometeorology, Boston, 14--18 August, American Meteorol. Society, Science Press, pp. 271--311.

  • J. W. Deardorff (1980) ArticleTitle‘Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model’ Boundary-Layer Meteorol 18 495–527

    Google Scholar 

  • S. H. Derbyshire (1990) ArticleTitle‘Nieuwstadt’s Stable Boundary Layer Revisited’ Boundary-Layer Meteorol 116 127–158

    Google Scholar 

  • J. R. Garratt (1992) The Atmospheric Boundary Layer Cambridge University Press Cambridge 316

    Google Scholar 

  • M. Germano U. Piomelli P. Moin W. H. Cabot (1991) ArticleTitle‘A Dynamic Subgrid-Scale Eddy Viscosity Model’ Phys. fluids A 3 1760–1765

    Google Scholar 

  • Jimenez, M. A. and Cuxart, J.: 2002, ‘Large-Eddy Simulations of Stable Boundary Layer: Exploration of ranges of applicability’, in 15th Conference on Boundary Layer and Turbulence, Wageningen, 14--19 July, American Meteorol. Society, Science Press, pp. 333--334.

  • A. N. Kolmogorov (1941) ArticleTitle‘Dissipation of Energy in a Locally Isotropic Turbulence’ Doklady Akad. Nauk SSSR 32 141

    Google Scholar 

  • B. Kosovic J. A. Curry (2000) ArticleTitle‘A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’ J. Atmos. Sci. 57 1052–1068

    Google Scholar 

  • J.P. Lafore J. Stein N. Asencio P. Bougeault V. Ducrocq J. Duron C. Fisher P. Héreil P. Mascart V. Masson J. P. Pinty J. -L. Redelsperger E. Richard J. Vilá-Guerau de Arellano (1998) ArticleTitle‘The Meso-NH Atmospheric Simulation System Part I: Adiabatic Formulation and Control Simulation’ Ann. Geophys. 16 90–109

    Google Scholar 

  • L. Mahrt J. Sun W. Blumen T. Delany S. Oncley (1998) ArticleTitle‘Nocturnal Boundary-Layer Regimes’ Boundary-Layer Meteorol 88 255–278

    Google Scholar 

  • L. Mahrt D. Vickers (2002) ArticleTitle‘Contrasting Vertical Structures of Nocturnal Boundary Layers’ Boundary-Layer Meteorol 105 351–363

    Google Scholar 

  • P. J. Mason S. H. Derbyshire (1990) ArticleTitleLarge-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’ Boundary-Layer Meteorol 53 117–162

    Google Scholar 

  • P. J. Mason D. J. Thomson (1992) ArticleTitle‘Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers’ J. Fluid Mech. 242 51–78

    Google Scholar 

  • G. S. Poulos W. Blumen D. C. Fritts J. K. Lundquist J. Sun S. P. Burns C. Nappo R. Banta R. Newsom J. Cuxart E. Terradellas B. Balsley M. Jensen (2002) ArticleTitle‘CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer’ Bull. Amer. Meteor. Soc. 83 555–581

    Google Scholar 

  • E.M. Saiki C. -H. Moeng P. Sullivan (2000) ArticleTitle‘Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer’ Boundary-Layer Meteorol 95 1–30

    Google Scholar 

  • M. R. Soler C. Infante P. Buenestado L. Mahrt (2002) ArticleTitle‘Observations of Nocturnal Drainage Flow in a Shallow Gully’ Boundary-Layer Meteorol 105 253–273

    Google Scholar 

  • R. B. Stull (1988) An Introduction to Boundary Layer Meteorology Kluwer Academic Publishers Dordretch 666

    Google Scholar 

  • P.P. Sullivan J.C. Mc Williams C. -H. Moeng (1994) ArticleTitle‘A Subgrid Scale Model for Large-Eddy simulations of Planetary Boundary-Layer Flows’ Boundary-Layer Meteorol 71 247–276

    Google Scholar 

  • B.J. H. Wiel ParticleVan de R. J. Ronda A. F. Moene H.A. R. Bruin ParticleDe A. A. M. Holtslag (2002) ArticleTitle‘Intermittent Turbulence and Oscillations in the Stable Boundary Layer Over Land Part I: A Bulk Model’ J. Atmos. Sci. 59 942–958

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, M.A., Cuxart, J. Large-Eddy Simulations of the Stable Boundary Layer Using the Standard Kolmogorov Theory: Range of Applicability. Boundary-Layer Meteorol 115, 241–261 (2005). https://doi.org/10.1007/s10546-004-3470-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-3470-4

Keywords

Navigation