Skip to main content
Log in

Metabolic phenotypes of phenylketonuria. Kinetic and molecular evaluation of the Blaskovics protein loading test

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

Background: As part of the German Collaborative Study of Children Treated for Phenylketonuria (PKU), a three-day protein loading test was applied to children at 6 months of age. This load elicits three principal types of blood phenylalanine (Phe) response, with types I and III clinically corresponding to classic PKU and mild hyperphenylalaninaemia not requiring diet (MHP), respectively. An intermediate type II, clinically corresponding to mild PKU, is characterized by early decline of blood Phe from above 1200 μmol/L down to levels between 600 and 1200 μmol/L at 72 h. Aims: Unbiased classification and kinetic and molecular characterization of the intermediate Phe response; estimation of phenotypic variability of Phe disposal.Method: A kinetic model with zero-order protein synthesis and first-order rate of metabolic disposal of Phe is applied to 157 tests. Results: A model of exponentially saturated activation describes the acceleration of Phe disposal from day 1 to 3 in the intermediate type of response. Eleven of 14 p.Y414C functional hemizygotes and two of three p.R261Q homozygotes manifested this kinetic type. The rate estimates of Phe metabolic disposal differ widely in patients with identical PAH genotype, yet are highly correlated with the Phe level at 72 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AV:

assigned phenotypic value according to Guldberg et al (1998)

HPA:

hyperphenylalaninaemia

K out :

first-order kinetic constant of metabolic loss/disposal

MHP:

mild hyperphenylalaninaemia

PAH:

phenylalanine hydroxylase

Phe:

phenylalanine

Phe72:

blood level of phenylalanine 72 h after start of loading (morning of day 4)

PKU:

phenylketonuria

PRA:

predicted residual activity (mean of in vitro activities, per cent of normal)

t 1/2 :

phenylalanine half-life (50% elimination time)

References

  • Berman JL, Cunningham GC, Day RW, Ford R, Hsia DY (1969): Causes for high phenylalanine with normal tyrosine in newborn screening programs. Am J Dis Child 117: 54–65.

    PubMed  CAS  Google Scholar 

  • Blaskovics ME (1976): Diagnostic considerations in phenylalaninemic subjects before and after dietary therapy. J Irish Med 69: 410–414.

    CAS  Google Scholar 

  • Blaskovics ME, Schaeffler GE, Hack S (1974): Phenylalaninemia. Differential diagnosis. Arch Dis Child 49: 835–843. doi:10.1136/adc.49.11.835

    Article  PubMed  CAS  Google Scholar 

  • Blau N (2005): BIOPKU: International database of patients and mutations causing BH4-responsive HPA/PKU. http://www.bh4.org/BH4DatabasesBioPKU.asp

  • Bortz J, Lienert GA (1998) Kurzgefasste Statistik für die klinische Forschung. Springer-Verlag, Berlin.

    Google Scholar 

  • Burgard P, Rupp A, Konecki DS, et al (1996): Phenylalanine hydroxylase genotypes, predicted residual enzyme activity and phenotypic parameters of diagnosis and treatment of phenylketonuria. Eur J Pediatr 155([Suppl 1]):S11–S15. doi:10.1007/PL00014222

    Article  PubMed  CAS  Google Scholar 

  • Fomon SJ, Haschke F, Ziegler EE, Nelson SE (1982) Body composition of reference children from birth to age 10 years. Am J Clin Nutr 35: 1169–1175.

    PubMed  CAS  Google Scholar 

  • Fukami MH, Haavik J, Flatmark T (1990): Phenylalanine as substrate for tyrosine hydroxylase in bovine adrenal chromaffin cells. Biochem J 268: 525–528.

    PubMed  CAS  Google Scholar 

  • Gjetting T, Petersen M, Guldberg P, Güttler F (2001): Missense mutations in the N-terminal domain of human phenylalanine hydroxylase interfere with binding of regulatory phenylalanine. Am J Hum Genet 68: 1353–1360. doi:10.1086/320604

    Article  PubMed  CAS  Google Scholar 

  • Gramer G, Burgard P, Garbrade SF, Lindner M (2007): Effects and clinical significance of tetrahydrobiopterin supplementation in phenylalanine hydroxylase-deficient hyperphenylalaninaemia. J Inherit Metab Dis 30: 556–562. doi:10.1007/s10545-007-0651-6

    Article  PubMed  CAS  Google Scholar 

  • Guldberg P, Rey F, Zschocke J et al (1998): A European multicenter study of phenylalanine hydroxylase deficiency: Classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 63: 71–79. doi:10.1086/301920

    Article  PubMed  CAS  Google Scholar 

  • Keen RE, Spain JD (1992): Computer Simulation in Biology. A BASIC Introduction. Wiley-Liss, New York.

    Google Scholar 

  • Kindt E, Motzfeldt K, Halvorsen S, et al (1984) Is phenylalanine requirement in infants and children related to protein intake? Br J Nutr 51: 435–442. doi:10.1079/BJN19840049

    Article  PubMed  CAS  Google Scholar 

  • Langenbeck U (2008): Classifying tetrahydrobiopterin responsiveness in the hyperphenylalaninaemias. J Inherit Metab Dis 31: 67–72. doi:10.1007/s10545-007-0572-4

    Article  PubMed  CAS  Google Scholar 

  • Langenbeck U, Zschocke J, Wendel U, Hönig V (2001): Modelling the phenylalanine blood level response during treatment of phenylketonuria. J Inherit Metab Dis 24: 805–814. doi:10.1023/A:1013946006155

    Article  PubMed  CAS  Google Scholar 

  • Lutz P, Schmidt H, Frey G, Bickel H (1982): Standardized loading test with protein for the differentiation of phenylketonuria from hyperphenylalaninaemia. J Inherit Metab Dis 5: 29–35. doi:10.1007/BF01799751

    Article  PubMed  CAS  Google Scholar 

  • Lutz P, Schmidt H, Batzler U (1990): Study design and description of patients. Eur J Pediatr 149(Supplement 1): S5–S12. doi:10.1007/BF02126292

    Article  PubMed  Google Scholar 

  • Mönch E, Kneer J, Jakobs C, et al (1990): Examination of urine metabolites in the newborn period and during protein loading tests at 6 months of age. Eur J Pediatr 149(Supplement 1): S17–S24. doi:10.1007/BF02126294

    Article  PubMed  Google Scholar 

  • O’Flynn ME, Holtzman NA, Blaskovics M, et al (1980): The diagnosis of phenylketonuria. A report from the collaborative study of children treated for phenylketonuria. Am J Dis Child 134: 769–774.

    PubMed  Google Scholar 

  • Okano Y, Eisensmith RC, Güttler F, et al (1991): Molecular basis of phenotypic heterogeneity in phenylketonuria. N Engl J Med 324: 1232–1238.

    Article  PubMed  CAS  Google Scholar 

  • Pey AL, Martinez A (2005): The activity of wild-type and mutant phenylalanine hydroxylase and its regulation by phenylalanine and tetrahydrobiopterin at physiological and pathological concentrations: An isothermal titration calorimetry study. Mol Genet Metab 86(Supplement 1): S43–S53. doi:10.1016/j.ymgme.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  • Sachs L (2004) Angewandte Statistik, 11th edn. Springer-Verlag, Berlin

    Google Scholar 

  • Schmidt H, Lutz P, Batzler U (1989): Differentialdiagnose des erhöhten Phenylalanin-Blutspiegels im Säuglingsalter. Ergebnisse der deutschen Verbundstudie über Phenylketonurie (PKU) / Hyperphenylalaninämie (HPA). Monatsschr Kinderheilkd 137: 86–92.

    PubMed  CAS  Google Scholar 

  • Scriver CR, Clow CL (1980): Phenylketonuria: epitome of human biochemical genetics. N Engl J Med 303: 1336–1342, 1394–1400.

    Google Scholar 

  • Scriver CR, Waters PJ (1999): Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 15: 267–272. doi:10.1016/S0168-9525(99)01761-8

    Article  PubMed  CAS  Google Scholar 

  • Thompson GN, Walter JH, Leonard JV, Halliday D (1990) In vivo enzyme activity in inborn errors of metabolism. Metabolism 39: 799–807. doi:10.1016/0026-0495(90)90122-S

    Article  PubMed  CAS  Google Scholar 

  • Thórólfsson M, Ibarra-Molero B, Fojan P, et al (2002): L-phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry 41: 7573–7585. doi:10.1021/bi0160720

    Article  PubMed  CAS  Google Scholar 

  • Treacy E, Pitt JJ, Seller K, et al (1996): In vivo disposal of phenylalanine in phenylketonuria: a study of two siblings. J Inher Metab Dis 19: 595–602. doi:10.1007/BF01799832

    Article  PubMed  CAS  Google Scholar 

  • van Spronsen FJ, van Rijn M, Dorgelo B, et al (2009) Phenylalanine tolerance can reliably be assessed at the age of 2 years in patients with PKU. J Inherit Metab Dis 32: 27–31. doi:10.1007/s10545-008-0937-3

    Article  PubMed  CAS  Google Scholar 

  • Waxman DJ, Azaroff L (1992): Phenobarbital induction of cytochrome P-450 gene expression. Biochem J 281: 577–592.

    PubMed  CAS  Google Scholar 

  • Zschocke J, Hoffmann GF (1999): Phenylketonuria mutations in Germany. Hum Genet 104: 390–398. doi:10.1007/s004390050973

    Article  PubMed  CAS  Google Scholar 

  • Zurflüh MR, Zschocke J, Lindner M (2008) Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat 29: 167–175. doi:10.1002/humu.20637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The German 1978 to 1995 Collaborative Study of Children Treated for Phenylketonuria (headed until 1989 by the late Professor Horst Bickel, thereafter by Professor Hans Joachim Bremer) received financial support from Stiftung Volkswagenwerk and Bundesministerium für Forschung und Technologie (BMBF). Eight paediatric centres participated in the study: Berlin (E. Mönch), Düsseldorf (Hildegard Przyrembel, U. Wendel), Göttingen (A.W. Behbehani, W. Voss), Hamburg (P. Koepp, P. Clemens), Heidelberg (Hildgund Schmidt, P. Lutz, K. Bartholomé, F.K. Trefz), München (J. Schaub, W. Endres), Münster (H. Gröbe, K. Ullrich), and Ulm (Dorothea Leupold). Additional acknowledgements appeared 1990 in Eur J Pediatr 149(Supplement 1): S3–S4.

Thanks are due to Sylvia Koerner for excellent administrative work and data handling, and to Elfriede Quak, Rainer Bielen and Verena Wahl for expert technical assistance with genotype analysis.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to U. Langenbeck.

Additional information

Communicating editor: Michael Gibson

Competing interests: None declared

References to electronic databases: Phenylketonuria: OMIM +261600. Phenylalanine hydroxylase: EC 1.14.16.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langenbeck, U., Burgard, P., Wendel, U. et al. Metabolic phenotypes of phenylketonuria. Kinetic and molecular evaluation of the Blaskovics protein loading test. J Inherit Metab Dis 32, 506–513 (2009). https://doi.org/10.1007/s10545-009-1152-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-009-1152-6

Keywords

Navigation