Skip to main content
Log in

Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work presents the fabrication of a microfluidic autoregulatory valve which is composed of several layers of thin polymer films (i.e., polyvinyl chloride (PVC), polyethylene terephthalate (PET) double-sided tape, and polydimethylsiloxane (PDMS)). Briefly, pulsed UV laser is employed to cut the microstructures of through grooves or holes in the thermoplastic polymer films, and then the polymer-film valves are precisely assembled through laminating the PDMS membranes to the thermoplastic polymer films through the roll-lamination method. The effective bonding between the PVC film and the PDMS membrane is realized using the planar seal method, and the valve is sandwiched and compressed by a home-made housing to achieve the good seal effect. Then, the flow performances of the prototype valve are examined, and constant flow autoregulation is realized under the static or dynamic test pressures. The long-term response of the valve is also studied and minimum flow-rate decrements are found over a long actuation time. The fabrication method proposed in this work is successful for the low-cost and fast prototyping of the polymer-film valve. We believe our method will also be broadly applicable for fabrication of other low-cost and disposable polymer-film microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • A.R. Abate, T. Hung, R.A. Sperling, P. Mary, A. Rotem, J.J. Agresti, M.A. Weiner, D.A. Weitz, DNA sequence analysis with droplet-based microfluidics. Lab Chip 13, 4864–4869 (2013)

    Article  Google Scholar 

  • H. Becker, L.E. Locascio, Polymer microfluidic devices. Talanta 56, 267–287 (2002)

    Article  Google Scholar 

  • C.F. Chen, J. Liu, C.C. Chang, D.L. DeVoe, High-pressure on-chip mechanical valves for thermoplastic microfluidic devices. Lab Chip 9, 3511–3516 (2009)

    Article  Google Scholar 

  • I. Doh, Y.H. Cho, Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves. Lab Chip 9, 2070–2075 (2009)

    Article  Google Scholar 

  • J.L. Garcia-Cordero, D. Kurzbuch, F. Benito-Lopez, D. Diamond, L.P. Lee, A.J. Ricco, Optically addressable single-use microfluidic valves by laser printer lithography. Lab Chip 10, 2680–2687 (2010)

    Article  Google Scholar 

  • H. Gong, A.T. Woolley, G.P. Nordin, High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16, 2450–2458 (2016)

    Article  Google Scholar 

  • P. Gu, K. Liu, H. Chen, T. Nishida, Z.H. Fan, Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves. Anal. Chem. 83, 446–452 (2011)

    Article  Google Scholar 

  • J. Hansson, M. Hillmering, T. Haraldsson, W. van der Wijngaart, Leak-tight vertical membrane microvalves. Lab Chip 16, 1439–1446 (2016)

    Article  Google Scholar 

  • S. Huang, Q. He, X. Hu, H. Chen, Fabrication of micro pneumatic valves with double-layer elastic poly(dimethylsiloxane) membranes in rigid poly(methyl methacrylate) microfluidic chips. J. Micromech. Microeng. 22, 085008 (2012)

    Article  Google Scholar 

  • H. Hwang, H.H. Kim, Y.K. Cho, Elastomeric membrane valves in a disc. Lab Chip 11, 1434–1436 (2011)

    Article  Google Scholar 

  • K. Iwai, K.C. Shih, X. Lin, T.A. Brubaker, R.D. Sochol, L. Lin, Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip 14, 3790–3799 (2014)

    Article  Google Scholar 

  • N.M. Karabacak, P.S. Spuhler, F. Fachin, E.J. Lim, V. Pai, E. Ozkumur, J.M. Martel, N. Kojic, K. Smith, P.I. Chen, J. Yang, H. Hwang, B. Morgan, J. Trautwein, T.A. Barber, S.L. Stott, S. Maheswaran, R. Kapur, D.A. Haber, M. Toner, Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9, 694–710 (2014)

    Article  Google Scholar 

  • K. Kawai, K. Arima, M. Morita, S. Shoji, Microfluidic valve array control system integrating a fluid demultiplexer circuit. J. Micromech. Microeng. 25, 065016 (2015)

    Article  Google Scholar 

  • P. Kim, K.W. Kwon, M.C. Park, S.H. Lee, S.M. Kim, K.Y. Suh, Soft lithography for microfluidics: A review. BioChip J 2, 1–11 (2008)

    Google Scholar 

  • P.J. Kitson, M.H. Rosnes, V. Sans, V. Dragone, L. Cronin, Configurable 3D-printed millifluidic and microfluidic ‘lab on a chip’s reactionware devices. Lab Chip 12, 3267–3271 (2012)

    Article  Google Scholar 

  • W. Lee, D. Kwon, W. Choi, G.Y. Jung, S. Jeon, 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in Helical Channel with trapezoid cross-section. Sci. Report 5, 7717 (2015)

    Article  Google Scholar 

  • R.M. McCormick, R.J. Nelson, M.G. Alonso-Amigo, D.J. Benvegnu, H.H. Hooper, Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 69, 2626–2630 (1997)

    Article  Google Scholar 

  • J.S. Mecomber, A.M. Stalcup, D. Hurd, H.B. Halsall, W.R. Heineman, C.J. Seliskar, K.R. Wehmeyer, P.A. Limbach, Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining. Anal. Chem. 78, 936–941 (2006)

    Article  Google Scholar 

  • R. Mukhopadhyay, When PDMS isn’t the best. Anal. Chem. 79, 3248–3253 (2007)

    Article  Google Scholar 

  • R. Novak, N. Ranu, R.A. Mathies, Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices. Lab Chip 13, 1468–1471 (2013)

    Article  Google Scholar 

  • E.A. Oblath, W.H. Henley, J.P. Alarie, J.M. Ramsey, A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip 13, 1325–1332 (2013)

    Article  Google Scholar 

  • H.S. Rho, Y. Yang, A.T. Hanke, M. Ottens, L.W. Terstappen, H. Gardeniers, Programmable v-type valve for cell and particle manipulation in microfluidic devices. Lab Chip 16, 305–311 (2016)

    Article  Google Scholar 

  • C.I. Rogers, J.B. Oxborrow, R.R. Anderson, L.F. Tsai, G.P. Nordin, A.T. Woolley, Microfluidic valves made from polymerized polyethylene glycol Diacrylate. Sensors Actuators B Chem. 191, 438–444 (2014)

    Article  Google Scholar 

  • Y. Sun, Y.C. Kwok, Polymeric microfluidic system for DNA analysis. Anal. Chim. Acta 556, 80–96 (2006)

    Article  Google Scholar 

  • Y.H. Tennico, M.T. Koesdjojo, S. Kondo, D.T. Mandrell, V.T. Remcho, Surface modification-assisted bonding of polymer-based microfluidic devices. Sensors Actuators B Chem. 143, 799–804 (2010)

    Article  Google Scholar 

  • B.L. Thompson, Y. Ouyang, G.R. Duarte, E. Carrilho, S.T. Krauss, J.P. Landers, Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. 10, 875–886 (2015)

    Article  Google Scholar 

  • M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic Microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000)

    Article  Google Scholar 

  • A.L. Vig, T. Mäkelä, P. Majander, V. Lambertini, J. Ahopelto, A. Kristensen, Roll-to-roll fabricated lab-on-a-chip devices. J. Micromech. Microeng. 21, 035006 (2011)

    Article  Google Scholar 

  • M.E. Vlachopoulou, A. Tserepi, P. Pavli, P. Argitis, M. Sanopoulou, K. Misiakos, A low temperature surface modification assisted method for bonding plastic substrates. J. Micromech. Microeng. 19, 015007 (2009)

    Article  Google Scholar 

  • X. Wang, C. Liedert, R. Liedert, I. Papautsky, A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Lab Chip 16, 1821–1830 (2016)

    Article  Google Scholar 

  • X. Zhang, D. Huang, W. Tang, D. Jiang, K. Chen, H. Yi, N. Xiang, Z. Ni, A low cost and quasi-commercial polymer film chip for high-throughput inertial cell isolation. RSC Adv. 6, 9734–9742 (2016)

    Article  Google Scholar 

  • W. Zhang, S. Lin, C. Wang, J. Hu, C. Li, Z. Zhuang, Y. Zhou, R.A. Mathies, C.J. Yang, PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9, 3088–3094 (2009)

    Article  Google Scholar 

  • X. Zhang, N. Xiang, W. Tang, D. Huang, X. Wang, H. Yi, Z. Ni, A passive flow regulator with low threshold pressure for high-throughput inertial isolation of microbeads. Lab Chip 15, 3473–3480 (2015)

    Article  Google Scholar 

  • C. Zhang, J. Xu, W. Ma, W. Zheng, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24, 243–284 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China (51505082 and 51375089), the Natural Science Foundation of Jiangsu Province (BK20150606), the “333” Project of Jiangsu Province (BRA2015291), and the Scientific Research Foundation of Graduate School of Southeast University (YBPY1601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Xiang or Hong Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhu, Z., Ni, Z. et al. Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics. Biomed Microdevices 19, 21 (2017). https://doi.org/10.1007/s10544-017-0169-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0169-0

Keywords

Navigation