Skip to main content
Log in

Evaluation of the effect of polymeric microneedle arrays of varying geometries in combination with a high-velocity applicator on skin permeability and irritation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Polymeric microneedles offer the advantages of being both mass-producible and inexpensive. However, their weakness lies in the fact that they are not adequate for sharp fabrication of a needle tip, which is an important factor for effective penetration. We hypothesized that effective penetration can be achieved using a high-velocity application system. Therefore, in the present study, we investigated the influence of various polymeric microneedle array geometries on skin permeability and irritation using such a system. Volar forearms of 16 healthy volunteers were treated using the microneedle system with four different parameters: applicator velocity (4.3, 6, and 8.5 m/s), tip radius (10, 15, and 20 μm), length (100, 200, and 300 μm), and number of needles (189 and 305 on a 50-mm2 area). A higher velocity of piercing clearly enhanced skin permeability and damage. A larger tip radius resulted in lower skin permeability and irritation at an applicator velocity of 4.3 m/s but did not have an effect at 6 m/s. Skin permeability was positively variable, ranging from 100 to 200 μm of needle length, and needle number showed no influence in the range investigated. In conclusion, a faster application speed could significantly enhance skin permeability and damage and compensate for insufficient penetration of the larger tip radius and shorter needles, which are also important factors for effective insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A. Arora, M.R. Prausnitz, S. Mitragotri, Micro-scale devices for transdermal drug delivery. Int. J. Pharm. 364(2), 227–236 (2008)

    Article  Google Scholar 

  • M.M. Badran, J. Kuntsche, A. Fahr, Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 36(4–5), 511–523 (2009)

    Article  Google Scholar 

  • S.M. Bal, J. Caussin, S. Pavel, J.A. Bouwstra, In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm. Sci. 35(3), 193–202 (2008)

    Article  Google Scholar 

  • S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 37(8), 1155–1163 (2004)

    Article  Google Scholar 

  • R.F. Donnelly, D.I. Morrow, T.R. Singh, K. Migalska, P.A. McCarron, C. O’Mahony, A.D. Woolfson, Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm. 35(10), 1242–1254 (2009)

    Article  Google Scholar 

  • A. Fullerton, T. Fischer, A. Lahti, K.P. Wilhelm, H. Takiwaki, J. Serup, Guidelines for measurement of skin colour and erythema. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 35(1), 1–10 (1996)

    Article  Google Scholar 

  • H.S. Gill, M.R. Prausnitz, Pocketed microneedles for drug delivery to the skin. J. Phys. Chem. Solids 69(5–6), 1537–1541 (2008)

    Article  Google Scholar 

  • Y.A. Gomaa, D.I. Morrow, M.J. Garland, R.F. Donnelly, L.K. El-Khordagui, V.M. Meidan, Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol. in Vitro. 24(7), 1971–1978 (2010)

    Article  Google Scholar 

  • S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87(8), 922–925 (1998)

    Article  Google Scholar 

  • C.Y. Jin, M.H. Han, S.S. Lee, Y.H. Choi, Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed. Microdevices 11(6), 1195–1203 (2009)

    Article  Google Scholar 

  • S. Liu, M.N. Jin, Y.S. Quan, F. Kamiyama, H. Katsumi, T. Sakane, A. Yamamoto, The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J. Control. Release 161(3), 933–941 (2012)

    Article  Google Scholar 

  • W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 21(6), 947–952 (2004)

    Article  Google Scholar 

  • W. Martanto, J.S. Moore, T. Couse, M.R. Prausnitz, Mechanism of fluid infusion during microneedle insertion and retraction. J. Control. Release 112(3), 357–361 (2006a)

    Article  Google Scholar 

  • W. Martanto, J.S. Moore, O. Kashlan, R. Kamath, P.M. Wang, J.M. O’Neal, M.R. Prausnitz, Microinfusion using hollow microneedles. Pharm. Res. 23(1), 104–113 (2006b)

    Article  Google Scholar 

  • K. Matsuo, S. Hirobe, Y. Yokota, Y. Ayabe, M. Seto, Y.S. Quan, F. Kamiyama, T. Tougan, T. Horii, Y. Mukai, N. Okada, S. Nakagawa, Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza. J. Control. Release 160(3), 495–501 (2012)

    Article  Google Scholar 

  • D.V. McAllister, M.G. Allen, M.R. Prausnitz, Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng. 2, 289–313 (2000)

    Article  Google Scholar 

  • D.V. McAllister, P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. U. S. A. 100(24), 13755–13760 (2003)

    Article  Google Scholar 

  • T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda, M. Wakui, K. Hanada, Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 7(3), 185–188 (2005)

    Article  Google Scholar 

  • J.H. Oh, H.H. Park, K.Y. Do, M. Han, D.H. Hyun, C.G. Kim, C.H. Kim, S.S. Lee, S.J. Hwang, S.C. Shin, C.W. Cho, Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur. J. Pharm. Biopharm. 69(3), 1040–1045 (2008)

    Article  Google Scholar 

  • J.H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J. Control. Release 104(1), 51–66 (2005)

    Article  Google Scholar 

  • J.H. Park, M.G. Allen, M.R. Prausnitz, Polymer microneedles for controlled-release drug delivery. Pharm. Res. 23(5), 1008–1019 (2006)

    Article  Google Scholar 

  • N. Roxhed, P. Griss, G. Stemme, Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed. Microdevices 10(2), 271–279 (2008)

    Article  Google Scholar 

  • K. Sakaguchi, Y. Hirota, N. Hashimoto, W. Ogawa, T. Sato, S. Okada, K. Hagino, Y. Asakura, Y. Kikkawa, J. Kojima, Y. Maekawa, H. Nakajima, A minimally invasive system for glucose area under the curve measurement using interstitial fluid extraction technology: evaluation of the accuracy and usefulness with oral glucose tolerance tests in subjects with and without diabetes. Diabetes Technol. Ther. 14(6), 485–491 (2012)

    Article  Google Scholar 

  • T. Sato, S. Okada, K. Hagino, Y. Asakura, Y. Kikkawa, J. Kojima, T. Watanabe, Y. Maekawa, K. Isobe, R. Koike, H. Nakajima, K. Asano, Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling. Diabetes Technol. Ther. 13(12), 1194–1200 (2011)

    Article  Google Scholar 

  • A.L. Teo, C. Shearwood, K.C. Ng, J. Lu, S. Moochhal, Transdermal microneedles for drug delivery applications. Mater. Sci. Eng. B 132, 151–154 (2006)

    Article  Google Scholar 

  • F.J. Verbaan, S.M. Bal, D.J. van den Berg, W.H. Groenink, H. Verpoorten, R. Lüttge, J.A. Bouwstra, Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release 117(2), 238–245 (2007)

    Article  Google Scholar 

  • F.J. Verbaan, S.M. Bal, D.J. van den Berg, J.A. Dijksman, M. van Hecke, H. Verpoorten, A. van den Berg, R. Luttge, J.A. Bouwstra, Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J. Control. Release 128(1), 80–88 (2008)

    Article  Google Scholar 

  • Y. Xie, B. Xu, Y. Gao, Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 1(2), 184–190 (2005)

    Article  Google Scholar 

  • G. Yan, K.S. Warner, J. Zhang, S. Sharma, B.K. Gale, Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm. 391(1–2), 7–12 (2010)

    Article  Google Scholar 

  • M. Yang, J.D. Zahn, Microneedle insertion force reduction using vibratory actuation. Biomed. Microdevices 6(3), 177–182 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Takahashi and S. Hosoya (Sysmex Corporation, Japan) for their experimental assistance. We also thank Y. Sasagawa and K. Ishii (Sysmex Corporation, Japan) for their statistical advices.

Conflict of interest

All authors are employees of Sysmex.

Financial support

Nothing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, T., Hagino, K. & Sato, T. Evaluation of the effect of polymeric microneedle arrays of varying geometries in combination with a high-velocity applicator on skin permeability and irritation. Biomed Microdevices 16, 591–597 (2014). https://doi.org/10.1007/s10544-014-9861-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9861-5

Keywords

Navigation