Advertisement

Biomedical Microdevices

, Volume 13, Issue 2, pp 325–333 | Cite as

Hot embossing for fabrication of a microfluidic 3D cell culture platform

  • Jessie S. Jeon
  • Seok Chung
  • Roger D. Kamm
  • Joseph L. Charest
Article

Abstract

Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.

Keywords

COC Microfluidics 3D cell culture Hot embossing Thermal bonding Surface treatment 

Notes

Acknowledgement

The research is supported by Award Number R21CA140096 from the National Cancer Institute and Draper Laboratories Inc. (IR&D Grant). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institue of Health. Seok Chung was supported by the International Research & Development Program (Grant number: 2009-00631).

References

  1. S.H. Ahn, L.G. Guo, ACS Nano. 3(8), 2304–2310 (2009)CrossRefGoogle Scholar
  2. H. Becker, L.E. Locascio, Talanta 56(2), 267–287 (2002)CrossRefGoogle Scholar
  3. A. Bhattacharyya, C.M. Klapperich, Anal. Chem. 78(3), 788–792 (2006)CrossRefGoogle Scholar
  4. J.T. Borenstein, H. Terai et al., Biomedical Microdevices 4(3), 167–175 (2002)CrossRefGoogle Scholar
  5. N.B. Bowden, M. Weck et al., Accounts Chem. Res. 34(3), 231–238 (2001)CrossRefGoogle Scholar
  6. J.L. Charest, L.E. Bryant et al., Biomaterials 25(19), 4767–4775 (2004)CrossRefGoogle Scholar
  7. J.L. Charest, M.T. Eliason et al., J. Vac. Sci. Tech. B 23(6), 3011–3014 (2005)CrossRefGoogle Scholar
  8. J.L. Charest, M.T. Eliason et al., Biomaterials 27(11), 2487–2494 (2006)CrossRefGoogle Scholar
  9. J.L. Charest, A.J. Garcia et al., Biomaterials 28(13), 2202–2210 (2007)CrossRefGoogle Scholar
  10. S. Chung, R. Sudo et al., Lab. Chip 9(2), 269–275 (2009a)CrossRefGoogle Scholar
  11. S. Chung, R. Sudo et al., Adv. Mater. 21(47), 4863–4867 (2009b)CrossRefGoogle Scholar
  12. S. Chung, R. Sudo et al., Ann. Biomed. Eng. 38(3), 1164–1177 (2010)CrossRefGoogle Scholar
  13. S.P. Desai, D.M. Freeman et al., Lab. Chip 9(11), 1631–1637 (2009)CrossRefGoogle Scholar
  14. G.A. Diaz-Quijada, R. Peytavi et al., Lab. Chip 7(7), 856–862 (2007)CrossRefGoogle Scholar
  15. M. A. Eddings, M. A. Johnson, et al., J. Micromech. Microeng. 18(6): (2008)Google Scholar
  16. J. El-Ali, P.K. Sorger et al., Nature 442(7101), 403–411 (2006)CrossRefGoogle Scholar
  17. K.R. Hawkins, P. Yager, Lab. Chip 3(4), 248–252 (2003)CrossRefGoogle Scholar
  18. M.L. Hupert, W.J. Guy et al., Microfluid. Nanofluid 3(1), 1–11 (2007)CrossRefGoogle Scholar
  19. B.G. Keselowsky, D.M. Collard et al., Biomaterials 25(28), 5947–5954 (2004)CrossRefGoogle Scholar
  20. B.G. Keselowsky, D.M. Collard et al., Proc. Natl. Acad. Sci. USA 102(17), 5953–5957 (2005)CrossRefGoogle Scholar
  21. P. W. Leech, J. Micromech. Microeng. 19(5) (2009)Google Scholar
  22. P.J. Mack, Y. Zhang et al., J. Biol. Chem. 284(13), 8412–8420 (2009)CrossRefGoogle Scholar
  23. L. Martynova, L.E. Locascio et al., Anal. Chem. 69(23), 4783–4789 (1997)CrossRefGoogle Scholar
  24. G. Mehta, J. Lee et al., Anal. Chem. 81(10), 3714–3722 (2009)CrossRefGoogle Scholar
  25. J. Narasimhan, I. Papautsky, J. Micromech. Microeng. 14(1), 96–103 (2004)CrossRefGoogle Scholar
  26. A. Piruska, I. Nikcevic et al., Lab. Chip 5(12), 1348–1354 (2005)CrossRefGoogle Scholar
  27. K.J. Regehr, M. Domenech et al., Lab. Chip 9(15), 2132–2139 (2009)CrossRefGoogle Scholar
  28. J. Steigert, S. Haeberle et al., J. Micromech. Microeng. 17(2), 333–341 (2007)CrossRefGoogle Scholar
  29. R. Sudo, S. Chung et al., FASEB J. 23(7), 2155–2164 (2009)CrossRefGoogle Scholar
  30. C.W. Tsao, D.L. DeVoe, Microfluid. Nanofluid. 6(1), 1–16 (2009)CrossRefGoogle Scholar
  31. V. Vickerman, J. Blundo et al., Lab. Chip 8(9), 1468–1477 (2008)CrossRefGoogle Scholar
  32. G.M. Whitesides, E. Ostuni et al., Annu. Rev. Biomed. Eng. 3, 335–373 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jessie S. Jeon
    • 1
  • Seok Chung
    • 3
  • Roger D. Kamm
    • 1
    • 2
  • Joseph L. Charest
    • 4
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
  4. 4.Charles Stark Draper LaboratoryCambridgeUSA

Personalised recommendations