Skip to main content
Log in

Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

High-precision micromilling was assessed as a tool for the rapid fabrication of mold masters for replicating microchip devices in thermoplastics. As an example, microchip electrophoresis devices were hot embossed in poly(methylmethacrylate) (PMMA) from brass masters fabricated via micromilling. Specifically, sidewall roughness and milling topology limitations were investigated. Numerical simulations were performed to determine the effects of additional volumes present on injection plugs (i.e., shape, size, concentration profiles) due to curvature of the corners produced by micromilling. Elongation of the plug was not dramatic (< 20%) for injection crosses with radii of curvatures to channel width ratios less than 0.5. Use of stronger pinching potentials, as compared to sharp-corner injectors, were necessary in order to obtain short sample plugs. The sidewalls of the polymer microstructures were characterized by a maximum average roughness of 115 nm and mean peak height of 290 nm. Sidewall roughness had insignificant effects on the bulk EOF as it was statistically the same for PMMA microchannels with different aspect ratios compared to LiGA-prepared devices with a value of ca. 3.7 × 10−4 cm2/(V s). PMMA microchip electrophoresis devices were used for the separation of pUC19 Sau3AI double-stranded DNA. The plate numbers achieved in the micromilled-based chips exceeded 1 million/m and were comparable to the plate numbers obtained for the LiGA-prepared devices of similar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson RC, Su X, Bogdan GJ, Fenton J (2000) A miniature integrated device for automated multistep genetic assays. Nucleic Acid Res 28(12):E60

    Article  Google Scholar 

  • Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26

    Article  Google Scholar 

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287

    Article  Google Scholar 

  • Bianchi F, Chevolot Y, Mathieu HJ, Girault HH (2001) Photomodification of polymer microchannels induced by static and dynamic excimer ablation: effect on the electroosmotic flow. Anal Chem 73(16):3845–3853

    Article  Google Scholar 

  • Blom MT, Hasselbrink EF, Wensink H, Van Den Berg A (2001) Solute dispersion by electroosmotic flow in nonuniform microfluidic channels. Micro Total Analysis Systems 2001. In: Proceedings mTAS 2001 Symposium, 5th, Monterey, CA, United States, Oct 21–25, 2001, pp 615–616

  • Boone TD, Fan ZH, Hooper HH, Ricco AJ, Tan H, Williams SJ (2002) Plastic advances microfluidic devices. Anal Chem 74(3):78A–86A

    Google Scholar 

  • Chen Z, Gao Y, Lin J, Su R, Xie Y (2004) Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template. J Chromatogr A 1038 (1–2):239–245

    Article  Google Scholar 

  • Chen J, Wabuyele M, Chen H, Patterson D, Hupert M, Shadpour H, Nikitopoulos D, Soper SA (2005) Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate. Anal Chem 77(2):658–666

    Article  Google Scholar 

  • Chou SY, Krauss PR, Renstrom PJ (1996) Nanoimprint lithography. J Vac Sci Technol B Microelectron Nanometer Struct 14(6):4129–4133

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

    Article  Google Scholar 

  • Effenhauser CS, Manz A, Widmer HM (1993) Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Anal Chem 65(19):2637–2642

    Article  Google Scholar 

  • Effenhauser CS, Paulus A, Manz A, Widmer HM (1994) High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device. Anal Chem 66(18):2949–2953

    Article  Google Scholar 

  • Ehrfeld W, Lehr H, Michel F, Wolf A, Gruber H-P, Bertholds A (1996) Micro electro discharge machining as a technology in micromachining. In: Proceedings of SPIE—the international society for optical engineering 2879 (Micromachining and Microfabrication Process Technology II), pp 332–337

  • Ermakov SV, Jacobson SC, Ramsey JM (2000) Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem 72(15):3512–3517

    Article  Google Scholar 

  • Esch MB, Kapur S, Irizarry G, Genova V (2003) Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab Chip 3(2):121–127

    Article  Google Scholar 

  • Foley JP, Dorsey JG (1983) Equations for calculation of chromatographic figures of merit for ideal and skewed peaks. Anal Chem 55:730–737

    Article  Google Scholar 

  • Friedrich CR, Coane PJ, Goettert J, Gopinathin N (1998) Direct fabrication of deep x-ray lithography masks by micromechanical milling. Precis Eng 22:164–173

    Article  Google Scholar 

  • Fu LM, Yang RJ, Lee GB, Liu HH (2002) Electrokinetic injection techniques in microfluidic chips. Anal Chem 74(19):5084–5091

    Article  Google Scholar 

  • Fu L-M, Yang R-J, Lee G-B (2003) Electrokinetic focusing injection methods on microfluidic devices. Anal Chem 75(8):1905–1910

    Article  Google Scholar 

  • Gerlach A, Knebel G, Guber AE, Heckele M, Herrmann D, Muslija A, Schaller T (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst Technol 7:265–268

    Article  Google Scholar 

  • Guber AE, Heckele M, Herrmann D, Muslija A, Saile V, Eichhorn L, Gietzelt T, Hoffmann W, Hauser PC, Tanyanyiwa J, Gerlach A, Gottschlich N, Knebel G (2004) Microfluidic lab-on-a-chip systems based on polymers—fabrication and application. Chem Eng J 101(1–3):447–453

    Article  Google Scholar 

  • Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261(5123):895–897

    Article  Google Scholar 

  • Huang X, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem 60(17):1837–1838

    Article  Google Scholar 

  • Jacobson SC, Hergenroder R, Koutny LB, Warmack RJ, Ramsey JM (1994) Effects of Injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal Chem 66(7):1107–1113

    Article  Google Scholar 

  • Jacobson SC, Culbertson CT, Daler JE, Ramsey JM (1998) Microchip structures for submillisecond electrophoresis. Anal Chem 70(16):3476–3480

    Article  Google Scholar 

  • Lee GB, Chen SH, Huang GR, Sung WC, Lin YH (2001) Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens Actuators B Chem B75(1–2):142–148

    Article  Google Scholar 

  • Liu Y, Foote RS, Jacobson SC, Ramsey RS, Ramsey JM (2000) Electrophoretic separation of proteins on a microchip with noncovalent, postcolumn labeling. Anal Chem 72(19):4608–4613

    Article  Google Scholar 

  • Liu Y, Rauch CB, Stevens RL, Lenigk R, Yang J, Rhine DB, Grodzinski P (2002) DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74(13):3063–3070

    Article  Google Scholar 

  • Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831

    Article  Google Scholar 

  • Madou M, Lee LJ, Koelling KW, Daunert S, Lai S, Koh CG, Juang Y, Yu L, Lu Y (2001) Design and fabrication of polymer microfluidic platforms for biomedical applications. ANTEC-SPE 59, pp 2534–2538

  • Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, MacCrehan WA (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69(23):4783–4789

    Article  Google Scholar 

  • Mecomber JS, Stalcup AM, Hurd D, Halsall HB, Heineman WR, Seliskar CJ, Wehmeyer KR, Limbach PA (2006) Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining. Anal Chem 78:936–941

    Article  Google Scholar 

  • Ocvirk G, Munroe M, Tang T, Oleschuk R, Westra K, Harrison DJ (2000) Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 21(1):107–115

    Article  Google Scholar 

  • Pu Q-S, Luttge R, Gardeniers HJGE, Van den Berg A (2003) Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass. Electrophoresis 24(1–2):162–171

    Article  Google Scholar 

  • Qi S, Liu X, Ford S, Barrows J, Thomas G, Kelly K, McCandless A, Lian K, Goettert J, Soper SA (2002) Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. Lab Chip 2(2):88–95

    Article  Google Scholar 

  • Schaller T, Bohn L, Mayer J, Schubert K (1999) Microstructure grooves with a width of less than 50 um cut with ground hard metal micro end mills. Precis Eng 23:229–235

    Article  Google Scholar 

  • Situma C, Wang Y, Hupert M, Barany F, McCarley RL, Soper SA (2005) Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultraviolet patterning and microfluidics for the detection of low-abundant point mutations. Anal Biochem 340(1):123–135

    Article  Google Scholar 

  • Slater GW, Mayer P (1995) Electrophoretic resolution versus fluctuations of the lateral dimensions of a capillary. Electrophoresis 16(5):771–779

    Article  Google Scholar 

  • Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Polymeric microelectromechanical systems. Anal Chem 72(19):643A–651A

    Article  Google Scholar 

  • Takacs M, Vero B, Meszaros I (2003) Micromilling of metallic materials. J Mater Process Technol 138:152–155

    Article  Google Scholar 

  • Thomas CD, Jacobson SC, Ramsey JM (2004a) Strategy for repetitive pinched injections on a microfluidic device. Anal Chem 76(20):6053–6057

    Article  Google Scholar 

  • Thomas G, Sinville R, Sutton S, Farquar H, Hammer RP, Soper SA, Cheng Y-W, Barany F (2004b) Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA. Electrophoresis 25(10–11):1668–1677

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. recent developments. Anal Chem 76(12):3373–3386

    Article  Google Scholar 

  • Wallenborg SR, Bailey CG (2000) Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence. Anal Chem 72(8):1872–1878

    Article  Google Scholar 

  • Xu J, Locascio L, Gaitan M, Lee CS (2000) Room-temperature imprinting method for plastic microchannel fabrication. Anal Chem 72(8):1930–1933

    Article  Google Scholar 

  • Zhang C-X, Manz A (2001) Narrow sample channel injectors for capillary electrophoresis on microchips. Anal Chem 73(11):2656–2662

    Article  Google Scholar 

  • Zhao DS, Roy B, McCormick MT, Kuhr WG, Brazill SA (2003) Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining. Lab Chip 3(2):93–99

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Institutes of Health (R24-EB0002115) and National Science Foundation (EPS-0346411). The authors would also like to thank Dr. Varshni Signh of the Center for Advanced Microstructures and Devices (CAMD, LSU) for help with obtaining SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Soper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hupert, M.L., Guy, W.J., Llopis, S.D. et al. Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices. Microfluid Nanofluid 3, 1–11 (2007). https://doi.org/10.1007/s10404-006-0091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0091-x

Keywords

Navigation