Skip to main content

Advertisement

Log in

Compressed collagen gel as the scaffold for skin engineering

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Collagen gel scaffolds can potentially be utilized as cell seeded systems for skin tissue engineering. However, its dramatic contraction after being mixed with cells and its mechanical weakness are the drawbacks for its application to skin engineering. In this study, a compressed collagen gel scaffold was fabricated through the rapid expulsion of liquid from reconstituted gels by the application of ‘plastic compression’(PC) technique. Both compressed and uncompressed gels were characterized with their gel contraction rate, morphology, the viability of seeded cells, their mechanical properties and the feasibility as a scaffold for constructing tissue-engineered skin. The results showed that the compression could significantly reduce the contraction of the collagen gel and improve its mechanical property. In addition, seeded dermal fibroblasts survived well in the compressed gel and seeded epidermal cells gradually developed into a stratified epidermal layer, and thus formed tissue engineered skin. This study reveals the potential of using compressed collagen gel as a scaffold for skin engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • M. Ananta, C.E. Aulin, J. Hilborn, D. Aibibu, S. Houis, R.A. Brown, V. Mudera, Tissue Eng. Part A 15, 1667 (2009)

    Article  Google Scholar 

  • F.A. Auger, F. Berthod, V. Moulin, R. Pouliot, L. Germain, Biotechnol. Appl. Biochem. 39, 263 (2004)

    Article  Google Scholar 

  • E. Bell, B. Ivarsson, C. Merrill, Proc. Natl. Acad. Sci. USA 76, 1274 (1979)

    Article  Google Scholar 

  • M. Bitar, V. Salih, R.A. Brown, S.N. Nazhat, J. Mater. Sci. Mater. Med. 18, 237 (2007)

    Article  Google Scholar 

  • M. Bitar, R.A. Brown, V. Salih, G. Kidane, J.C. Knowles, S.N. Nazhat, Biomacromolecules 9, 129 (2008)

    Article  Google Scholar 

  • R.A. Brown, M. Wiseman, C.B. Chuo, U. Cheema, S.N. Nazhat, Adv. Funct. Mater. 15, 1762 (2005)

    Article  Google Scholar 

  • P.G. Buxton, M. Bitar, K. Gellynck, M. Parkar, R.A. Brown, A.M. Young, J.C. Knowles, S.N. Nazhat, Bone 43, 377 (2008)

    Article  Google Scholar 

  • V. Charulatha, A. Rajaram, Biomaterials 24, 759 (2003)

    Article  Google Scholar 

  • U. Cheema, C.B. Chuo, P. Sarathchandra, S.N. Nazhat, R.A. Brown, Adv. Funct Mater. 17, 2426 (2007)

    Article  Google Scholar 

  • Y. Chen, Y.L. Sun, C. Zhao, M.E. Zobitz, K.N. An, S.L. Moran, P.C. Amadio, J. Biomed. Mater. Res. B Appl. Biomater. 84, 218 (2008)

    Google Scholar 

  • W.H. Eaglstein, V. Falanga, J. Am. Acad. Dermatol. 39, 1007 (1998)

    Article  Google Scholar 

  • J.D. Goldstein, A.J. Tria, J.P. Zawadsky, Y.P. Kato, D. Christiansen, F.H. Silver, J. Bone Jt. Surg. Am. 71, 1183 (1989)

    Google Scholar 

  • B. Hafemann, K. Ghofrani, H.G. Gattner, H. Stieve, N. Pallua, J. Mater. Sci. Mater. Med. 12, 437 (2001)

    Article  Google Scholar 

  • S.P. Hoerstrup, A. Kadner, C. Breymann, C.F. Maurus, C.I. Guenter, R. Sodian, J.F. Visjager, G. Zund, M.I. Turina, Ann. Thorac. Surg. 74, 46 (2002)

    Article  Google Scholar 

  • K. Hu, Y. Dai, Q. Hu, J. Li, J. Yuan, J. Li, Q. Wu, Burns 32, 416 (2006)

    Article  Google Scholar 

  • P.A. Jimenez, S.E. Jimenez, Am. J. Surg. 187, 56S (2004)

    Article  Google Scholar 

  • I. Jones, L. Currie, R. Martin, Br. J. Plast. Surg. 55, 185 (2002)

    Article  Google Scholar 

  • Y.P. Kato, M.G. Dunn, J.P. Zawadsky, A.J. Tria, F.H. Silver, J. Bone Jt. Surg. Am. 73, 561 (1991)

    Google Scholar 

  • C.H. Lee, A. Singla, Y. Lee, Int. J. Pharm. 221, 1 (2001)

    Article  Google Scholar 

  • S. Nakagawa, P. Pawelek, F. Grinnell, J. Invest. Dermatol. 93, 792 (1989)

    Article  Google Scholar 

  • S. Ohsawa, N. Yasui, K. Ono, Cell Biol. Int. Rep. 6, 767 (1982)

    Article  Google Scholar 

  • S.N. Park, J.C. Park, H.O. Kim, M.J. Song, H. Suh, Biomaterials 23, 1205 (2002)

    Article  Google Scholar 

  • P. Rompré, F.A. Auger, L. Germain, V. Bouvard, C.A. López Valle, J. Thibault, A. Le Duy, In Vitro Cell Dev. Biol. 26, 983 (1990)

    Google Scholar 

  • K. Suda, B. Rothen-Rutishauser, M. Günthert, H. Wunderli-Allenspach, In Vitro Cell Dev. Biol. Anim. 37, 505 (2001)

    Article  Google Scholar 

  • G. Vaissiere, B. Chevallay, D. Herbage, O. Damour, Med. Biol. Eng. Comput. 38, 205 (2000)

    Article  Google Scholar 

  • Y.K. Zhu, T. Umino, X.D. Liu, H.J. Wang, D.J. Romberger, J.R. Spurzem, S.I. Rennard, Chest 117, 234S (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by China Postdoctoral Research Foundation, National Natural Science Foundation (30872694), National “973”Project Foundation (2005CB522700) and “111 Project grant ” (B07024). We also thanks for the technical assistance from Dr. Kris Gellynck and Prof. Robert Brown from University College London and Dr. Liang Xu from our center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Kuikui Hu and Hui Shi contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K., Shi, H., Zhu, J. et al. Compressed collagen gel as the scaffold for skin engineering. Biomed Microdevices 12, 627–635 (2010). https://doi.org/10.1007/s10544-010-9415-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9415-4

Keywords

Navigation