Skip to main content

Advertisement

Log in

Chitosan as a Modifying Component of Artificial Scaffold for Human Skin Tissue Engineering

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We compared the structure and mechanical properties of scaffolds based on pure collagen, pure chitosan, and a mixture of these polymers. The role of the composition and structure of scaffolds in the maintenance of cell functions (proliferation, differentiation, and migration) was demonstrated in two experimental models: homogeneous tissue analogues (scaffold populated by fibroblasts) and complex skin equivalents (fibroblasts and keratinocytes). In contrast to collagen scaffolds, pure chitosan inhibited the growth of fibroblasts that did not form contacts with chitosan fibers, but formed specific cellular conglomerates, spheroids, and lose their ability to synthesize natural extracellular matrix. However, the use of chitosan as an additive stimulated proliferative activity of fibroblasts on collagen, which can be associated with improvement of mechanical properties of the collagen scaffolds. The effectiveness of chitosan as an additional cross-linking agent also manifested in its ability to improve significantly the resistance of collagen scaffolds to fibroblast contraction in comparison with glutaraldehyde treatment. Polymer scaffolds (without cells) accelerated complete healing of skin wounds in vivo irrespective of their composition healing, pure chitosan sponge being most effective. We concluded that the use of chitosan as the scaffold for skin equivalents populated with skin cells is impractical, whereas it can be an effective modifier of polymer scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Sarkisov and Yu. M. Petrov, Microscopic Technique [in Russian], Moscow (1996).

  2. E. V. Sytina, T. Kh. Tenchurin, S. G. Rudyak, et al., Molecularnaya Medicina, No. 6, 38–47 (2014).

  3. T. Aasen and J. C. Izpisua Belmonte, Nat. Protoc., 5, No. 2, 371–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. S. T. Boyce, R. J. Kagan, D. G. Greenhalgh, et al., J. Trauma., 60, No. 4, 821–829 (2006).

    PubMed  Google Scholar 

  5. Y. H. Cheng, I. J. Wang, T. H. Young, Tissue Eng. Part A, 15, No. 8, 2001–2013 (2009).

    Article  Google Scholar 

  6. J. Eble, R. Golbik, K. Mann, and K. Kuhn, EMBO J., 12, No. 12, 4795–4802 (1993).

    PubMed Central  CAS  PubMed  Google Scholar 

  7. A. Fakhry, G. B. Schneiderb, R. Zaharias, and S. Senel, Biomaterials, 25, No. 11, 2075–2079 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. S. Geng, A. Mezentsev, S. Kalachikov, et al., J. Cell Sci., 119, Pt 23, 4901–4912 (2006).

  9. F. Grinnell, Trends Cell Biol., 10, No. 9, 362–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. A. B. Hilmi, A. S. Halim, A. Hassan, et al., Springerplus, 2, No. 1, doi: 10.1186/2193-1801-2-79 (2013).

  11. G. I. Howling, P. W. Dettmar, P. A. Goddard, et al., Biomaterials, 22, No. 22, 2959–2966 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. L. L. Huang-Lee, D. T. Cheung, and M. E. Nimni, J. Biomed. Mater. Res., 24, No. 9, 1185–1201 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. S. Iyer, N. Udpa, and Y. Gao, J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.35075 (2014).

    Google Scholar 

  14. E. Jorge-Herrero, P. Fernandez, J. Turnay, et al., Biomaterials, 20, No. 5, 539–545 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Y. G. Ko, N. Kawazoe, T. Tateishi, and G. Chen, J. Biomed. Mater. Res. B Appl. Biomater., 93, No. 2, 341–350 (2010).

    Article  PubMed  Google Scholar 

  16. J. Ma, H. Wang, B. He, and J. Chen, Biomaterials, 22, No. 4, 331–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. J. S. Mao, Y. L. Cui, X. H. Wang. et al., Biomaterials, 25, No. 18, 3973–3981 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. T. Mori, M. Okumura, M. Matsuura, et al., Biomaterials, 18, No. 13, 947–951 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. K. W. Ng, H. L. Khor, and D. W. Hutmacher, Biomaterials, 25, No. 14, 2807–2818 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. H. K. No, N. Y. Park, S.H. Lee, and S. P. Meyers, Int. J. Food Microbiol., 74, No. 1, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. F. J. O’Brien, B. A. Harley, M. A. Waller, et al., Technol. Health Care, 15, No. 1, 3–17 (2007).

    PubMed  Google Scholar 

  22. F. J. O’Brien, B. A. Harley, I. V. Yannas, L. J. Gibson, et al., Biomaterials, 26, No. 4, 433–441 (2005).

    Article  PubMed  Google Scholar 

  23. L. H. Olde Damink, P. J. Dijkstra, M. J. Van Luyn, et al., J. Biomed. Mater. Res., 29, No. 2, 139–147 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. M. Petreaca and M. Martins-Green, Principles of Regenerative Medicine. Eds. A. Atala et al., New York (2011), pp. 19–65.

    Book  Google Scholar 

  25. M. J. Powers, R. E. Rodriguez, and L. G. Griffi th, Biotechnol. Bioeng., 53, No. 4, 415–426 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. N. Rajan, J. Habermehl, M. F. Cote, et al., Nat. Protoc., 1, No. 6, 2753–2758 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. D. Revi, W. Paul, T.V. Anilkumar, and C. P. Sharma, J. Biomed. Mater. Res., 102, No. 9, 3273–3281 (2014).

    Article  Google Scholar 

  28. C. Tangsadthakun, S. Kanokpanont, N. Sanchavanakit, et al., J. Met. Mater. Miner., 16, No. 1, 37–44 (2006).

    CAS  Google Scholar 

  29. H. Ueno, F. Nakamura, M. Murakami, et al., Biomaterials, 22, No. 15, 2125–2130 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. E. A. Voroteliak, A. Sh. Shikhverdieva, A. V. Vasil’ev, and V. V. Terskikh, Izv. Akad. Nauk. Ser. Biol., No, 4, 421–426 (2002).

  31. E. R. Waelti, S.P. Inaebnit, H. P. Rast, et al., J. Invest. Dermatol., 98, No. 5, 805–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. S. Werner, T. Krieg, and H. Smola, J. Invest. Dermatol., 127, No. 5, 998–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. C. Wiegand, D. Winter, and U. C. Hipler, Skin Pharmacol. Physiol., 23, No. 3, 164–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. I. V. Yannas, D. S. Tzeranis, B. A. Harley, and P. T. So, Philos. Trans. A Math. Phys. Eng. Sci., 368, No. 1917, 2123–2139 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Panteleev.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 103–113, April, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, O.A., Grigor’ev, T.E., Goncharov, M.E. et al. Chitosan as a Modifying Component of Artificial Scaffold for Human Skin Tissue Engineering. Bull Exp Biol Med 159, 557–566 (2015). https://doi.org/10.1007/s10517-015-3014-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-015-3014-6

Key Words

Navigation