Skip to main content
Log in

Fractional-order general Lagrange scaling functions and their applications

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this study, a general formulation for the fractional-order general Lagrange scaling functions (FGLSFs) is introduced. These functions are employed for solving a class of fractional differential equations and a particular class of fractional delay differential equations. For this approach, we derive FGLSFs fractional integration and delay operational matrices. These operational matrices and collocation method are utilized to reduce each of the problems to a system of algebraic equation, which can be solve employing Newton’s iterative method. We indicate convergence of this method. Finally, some illustrative examples in order to observe the validity, effectiveness and accuracy of the present technique are included. Also, by applying this method, we solve the mathematical model of the noise effect on the laser device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)

    Article  MATH  Google Scholar 

  2. Behroozifar, M.: Spectral method for solving high order nonlinear boundary value problems via operational matrices. BIT Numer. Math. 55, 901–925 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellman, R., Cooke, K.L.: Differential-Difference Equation. Academic Press, New York (1963)

    Book  MATH  Google Scholar 

  4. Bhrawy, A., Alhamed, Y., Baleanu, D., Al-Zahrani, A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17(4), 1137–1157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole, Cengage Learing, Boston (2010)

    MATH  Google Scholar 

  6. Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189(1), 541–548 (2007)

    MathSciNet  MATH  Google Scholar 

  7. El’sgol’c, L.E., Norkin, S.B.: Introduction to the Theory of Differential Equations with Deviating Argument, 2nd edn. Nauka, Moscov (1971). (in Russian) (Mathematics in Science and Engineering, vol. 105, Academic Press, New York (1973))

    Google Scholar 

  8. Foroozandeh, Z., Shamsi, M.: Solution of nonlinear optimal control problems by the interpolating scaling functions. Acta Astron. 72, 21–26 (2012)

    Article  Google Scholar 

  9. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  10. Jafari, H., Yousefi, S.A., Firoozjaee, M.A., Momani, S., Khalique, C.M.: Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62(3), 1038–1045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38, 6038–6051 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krasovskii, N.N.: Stability of Motion. Standford University Press, Palo Alto (1963)

    MATH  Google Scholar 

  13. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  14. Lakestani, M., Nemati Saray, B.: Numerical solution of telegraph equation using interpolating scaling functions. Comput. Math. Appl. 60, 1964–1972 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, L.: Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 15, 2284–2292 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Machado, J.A.T.: J. Syst. Anal. Model. Simul. 27, 107 (1997)

    Google Scholar 

  17. Marzban, H.R., Hajiabdolrahmani, S.: Numerical solution of piecewise constant delay systems based on a hybrid framework. Int. J. Differ. Equ. 2016 (2016)

  18. Marzban, H.R., Pirmoradian, H.: A novel approach for the numerical investigation of optimal control problems containing multiple delays. Optim. Control Appl. Methods (2017). https://doi.org/10.1002/oca.2349

    Article  MATH  Google Scholar 

  19. Marzban, H.R., Razzaghi, M.: Solution of multi-delay systems using hybrid of block-pulse functions and Taylor series. Sound. Vib. 292, 954–963 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marzban, H.R., Tabrizidooz, H.R.: A hybrid approximation method for solving Hutchinson’s equation. Commun. Nonlinear Sci. Numer. Simul. 17, 100–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moghaddam, B.P., Mostaghim, Z.S.: A numerical method based on finite difference for solving fractional delay differential equations. J. Taibah Univ. Sci. 7(3), 120–127 (2013)

    Article  Google Scholar 

  24. Myshkis, A.D.: General theory of differential equations with a retarded argument. Uspehi Mat. Nauk. 22(134), 21–57 (1949). (in Russian) (Amer. Math. Soc. Transl. No. 55 (1951))

    MathSciNet  Google Scholar 

  25. Odibat, Z.M., Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 27–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Odibat, Z., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier, Amsterdam (1974)

    MATH  Google Scholar 

  28. Oustaloup, A.: Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans. Circuits Syst. 28(10), 1007–1009 (1981)

    Article  Google Scholar 

  29. Ozaktas, H.M., Arikan, O., Kutay, M.A., Bozdagt, G.: Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996)

    Article  Google Scholar 

  30. Pieroux, D., Erneux, T., Gavrielides, A., Kovanis, V.: Hopf bifurcation subject to a large delay in a laser system. SIAM J. Appl. Math. 61(3), 966–982 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rabiei, K., Ordokhani, Y., Babolian, E.: Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems. J. Vib. Control. 24(15), 3370–3383 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74, 223–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40, 8087–8107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rashed, M.T.: Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equations. Appl. Math. Comput. 151, 869–878 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Rashidinia, J., Jokar, M.: Application of polynomial scaling functions for numerical solution of telegraph equation. Appl. Anal. 95(1), 105–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rehman, M.U., Khan, R.A.: A numerical method for solving boundary value problems for fractional differential equations. Appl. Math. Model. 36, 894–907 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sabermahani, S., Ordokhani, Y., Yousefi, S.A.: Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Comput. Appl. Math. (2017). https://doi.org/10.1007/s40314-017-0547-5

    Article  MATH  Google Scholar 

  38. Saboureau, P., Foing, J.P., Schanne, P.: Injection-locked semiconductor lasers with delayed optoelectronic feedback. IEEE J. Quantum Electron. 33, 1582–1591 (1997)

    Article  Google Scholar 

  39. Sadeghi Hafshejani, M., Karimi Vanani, S., Sedighi Hafshejani, J.: Numerical solution of delay differential equations using Legendre wavelet method. World Appl. Sci. 13, 27–33 (2011)

    Google Scholar 

  40. Saeed, U., Rehman, M.U.: Hermite wavelet method for fractional delay differential equations. J. Differ. Equ. 2014, 1–8 (2014)

    Article  Google Scholar 

  41. Sedaghat, S., Ordokhani, Y., Dehghan, M.: Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 17, 4815–4830 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sipahi, R., Niculescu, S.I.: Deterministic time-delayed traffic flow models: a survey. In: Complex Time-delay Systems, pp. 297–322. Springer, Berlin, Heidelberg (2009)

  43. Szegö, G.: Orthogonal Polynomials, 3rd edn. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  44. Tabrizidooz, H.R., Marzban, H.R., Razzaghi, M.: Solution of the generalized Emden-Fowler equations by the hybrid functions method. Phys. Scr. 80(2), 5 (2009)

    Article  MATH  Google Scholar 

  45. Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays. Nonlinear Dyn. 83(1–2), 419–432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, T., Meng, X., Zhang, T.: SVEIRS: A New Epidemic Disease Model with Time Delays and Impulsive Effects. Abstract and Applied Analysis, vol. 2014. Hindawi Publishing Corporation, London (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Additional information

Communicated by Jan Hesthaven.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabermahani, S., Ordokhani, Y. & Yousefi, S.A. Fractional-order general Lagrange scaling functions and their applications. Bit Numer Math 60, 101–128 (2020). https://doi.org/10.1007/s10543-019-00769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00769-0

Keywords

Mathematics Subject Classification

Navigation